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Abstract

We develop a procedure for adjudicating between models of firm wage-
setting conduct. Using data from a U.S. job search platform, we propose a
methodology to aggregate workers’ choices over menus of jobs into rankings
of firms’ non-wage amenities. We use these estimates to formulate a test of
conduct based on exclusion restrictions. Oligopsonistic models incorporat-
ing strategic interactions between firms and tailoring of wage offers to work-
ers’ outside options are rejected in favor of monopsonistic models featuring
near-uniform markdowns. Misspecification has meaningful consequences: our
preferred model predicts average markdowns of 19.5%, while others predict
average markdowns as large as 26.6%.
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1 Introduction

Canonical models of wage determination assume that labor markets are perfectly
competitive—that “markets set wages” (Card 2022). However, a rapidly growing
body of empirical evidence suggests that employers have wage-setting power (Manning
2005; 2011; Card et al. 2018). When markets are not perfectly competitive, wage
determination depends upon the nature of firm wage-setting conduct: how firms
determine which workers to hire, and how much to pay them. Under imperfect
competition, firms need not set wages equal to the marginal revenue product of labor;
rather, a variety of forms of wage-setting conduct may prevail.

Although recent studies of wage setting reflect the paradigm shift from “markets
set wages” to “firms set wages,” most impose a particular model of firm conduct and
propose a reduced form test of that alternative relative to the perfect competition
null. For instance, some studies adopt models of non-atomistic firms that take into
account strategic interactions between their wage offers and those of their competi-
tors, while others adopt models of atomistic firms that ignore such interactions. In
practice, studies make a host of additional untested assumptions about key aspects
of wage-setting conduct, including whether firms price discriminate between workers,
bargain over or post wages, collude with competitors, or respond to common own-
ership incentives (among other possibilities). Importantly, different assumed modes
of conduct imply markedly different conclusions about wage dispersion and the ex-
tent to which firms exercise market power. Erroneous assumptions about the form of
conduct therefore bias inferences about markdowns, welfare, and efficiency.

This paper develops a testing procedure to adjudicate between non-nested models
of firms’ wage-setting conduct. We then apply this procedure to provide direct evi-
dence about the nature of firm conduct using novel data from a high-wage labor mar-
ket. Motivated by recent interest in both the information firms act on and the norms
firms abide by when setting wages (Derenoncourt et al. 2023; Cullen, Li, and Perez-
Truglia 2023; Hazell et al. 2022), we focus on two alternatives: first, whether firms
compete strategically (Berger, Herkenhoff, and Mongey 2022; Lamadon, Mogstad,
and Setzler 2022) and second, whether firms tailor wage offers to individual workers’
outside options (Postel-Vinay and Robin 2002; Jäger et al. 2023). These alternatives
are important features of wage-setting conduct, but they are by no means the only
ones. While our setting is not well-suited for testing certain alternatives—for in-
stance, we cannot test between bargaining or posting theories of wage determination
(Giupponi et al. 2024)—our methods can be adapted to test between a wide variety
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of conduct alternatives in other labor markets.
Our testing procedure builds upon two recent developments. The first is the rise

of online job platforms that collect granular data on salary determination beyond just
the salaries of realized matches. This data enables credible estimation of firm-specific
labor supply curves, which is necessary to characterize the scope of firms’ wage-setting
power (Azar, Berry, and Marinescu 2022). The second is the increasing availability
of tools developed in the modern industrial organization (IO) literature to study the
price-setting conduct of firms in product markets (beginning with Bresnahan 1987,
reviewed by Gandhi and Nevo 2021). At a high level, the strategy we propose is a
labor market analog of the marginal cost estimation procedure of Berry, Levinsohn,
and Pakes (1995): given estimates of labor supply, applying an assumption about
firm conduct reveals implied equilibrium markdowns and therefore firms’ willingness
to pay for labor. Consequently, in the first step of our analysis, we propose a novel
technique for estimating the labor supply of workers to differentiated firms, which
we use to construct model-implied markdowns under various conduct assumptions.
Following Berry and Haile (2014) and Duarte et al. (2023), we test between conduct
alternatives via an exclusion restriction: instruments that affect labor supply but do
not affect the marginal revenue product of labor should be uncorrelated with recovered
demand residuals under the true conduct assumption. Our testing procedure ranks
models by comparing the degree to which they violate this exclusion restriction.

To disentangle labor supply from labor demand without imposing restrictive as-
sumptions on the underlying model of firm conduct, it is necessary to observe the
choice sets of workers over jobs. However, this has typically been impossible outside
the lab: matched employer-employee data, for instance, only record the realized tran-
sitions of workers between firms. To overcome these data limitations, we leverage the
unique matching process on Hired.com, which is a large, high-wage online job board.
On this platform, candidates do not directly apply to jobs—rather, firms looking to
fill vacancies submit “bids” on candidates. A bid contains a description of the vacancy
as well as an indication of how much the firm would be willing to pay the candidate
(the “bid salary”). Candidates decide whether or not to interview with firms based
on their bids. This setting has several advantages. First, because candidates can only
enter the recruitment process at firms that bid on them, we measure the full set of
options they choose from on the platform. Second, because we observe candidates’
decisions to accept or reject firms’ bids, we can cleanly infer their revealed preferences
over firms. Last, our data on bids reveal detailed variation in firms’ willingness to
pay for candidates that extends beyond those the firm ultimately hires.
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Armed with these data, we turn to the analysis of worker preferences. We first
propose a novel method for estimating the non-wage amenity values candidates asso-
ciate with firms. Our estimator ranks firms by aggregating the revealed preferences
of candidates (Avery et al. 2013; Sorkin 2018). In particular, the estimated amenity
value of any firm depends recursively upon the estimated amenity values of the firms
it was revealed-preferred to: for a firm to be highly ranked, its bids must be accepted
by candidates who reject the bids of other highly ranked firms. In contrast to existing
estimates of amenity values, we neither assume that all candidates share the same
(mean) ranking of amenities, nor that candidates’ (mean) rankings are a determinis-
tic function of their demographics. Instead, we describe candidates’ preferences as a
mixture of a small number of types, each with a unique mean ranking of firms. These
types represent sub-populations of candidates who share similar preference orderings.
Further, we allow candidates’ type probabilities to depend upon a rich set of observed
characteristics. As a result, our estimator flexibly models both vertical differentiation
(between-firm differences in amenity values common to all candidates) and horizontal
differentiation (within-firm differences in amenity values across candidates).1 Flexi-
bly modeling the correlation between candidates’ observable characteristics and their
latent preference types is crucial for testing whether firms tailor offers based on the
predictable component of candidates’ preferences.

Next, we propose a blueprint for analyzing labor demand that allows us to ad-
judicate between non-nested models of firm wage-setting conduct. Each conduct as-
sumption defines a unique mapping between labor supply and the marginal revenue
product of labor (MRPL). We invert these mappings, plugging in first-step labor
supply estimates, to recover the match-specific markdowns (and MRPL) implied by
each alternative conduct assumption. To adapt models of conduct to our data, we
analogize the behavior of firms on the platform to that of bidders in a large online
auction marketplace: firms compete against each other by bidding for workers’ talent.
We draw upon insights from the empirical auction literature (Guerre, Perrigne, and
Vuong 2000; Backus and Lewis 2020) to define an equilibrium concept, establish the

1. Our approach shares similarities with standard approaches in IO for modeling consumer de-
mand over differentiated products, which often describe preferences as a mixture of normally-
distributed random coefficients associated with product and consumer characteristics (in other words,
a consumer’s “type” is her vector of random coefficients). In order for this approach to accurately
capture preference heterogeneity, researchers must decide a priori which product (or firm) char-
acteristics are relevant. This is reminiscent of the hedonic approach for assessing compensating
differentials, which has had limited success empirically (Mas and Pallais 2017). We therefore build
a procedure that does not restrict preference heterogeneity to be a function of known firm charac-
teristics. Instead, we model worker preferences as draws from a categorical distribution of latent
types, and place no restrictions on the vertical ranking of firms conditional on a worker’s type.
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identification of markdowns, and propose a method for estimating those markdowns.
To test between the various models of conduct, we implement the Vuong non-nested
model comparison test (Vuong 1989; Rivers and Vuong 2002). The logic of the Vuong
test is simple: when comparing two alternative models, the one that is closer to the
truth should “fit” better. Here, as in Backus, Conlon, and Sinkinson (2021) and
Duarte et al. (2023), model “fit” is determined by an exclusion restriction: instru-
ments that quasi-randomly shift markdowns but that do not affect labor productivity
should not be correlated with the model-implied MRPL recovered from our inversion.
Excluded instruments that generate differential shifts in markdowns across models
can therefore be used to adjudicate between those models.

Our initial set of findings focuses on labor supply. First, we reject a model in
which preferences are well-described by a single (mean) ranking of firms: our pre-
ferred estimates describe preferences as a mixture of three types of workers. Second,
we document substantial vertical differentiation: the average worker is willing to pay
12.3% of her ask salary for a one standard deviation improvement in firm amenities.
Third, the scale of systematic horizontal variation is at least as large as that of ver-
tical differentiation: the average within-firm standard deviation in valuations across
workers is 14% of the ask. This large and predictable horizontal preference variation
may grant firms significant wage-setting power. Indeed, if it were priced into firms’
wage offers, equilibrium markdowns would vary substantially not only between firms,
but also across workers within firms. Fourth, consistent with Lagos (2021) and Maes-
tas et al. (2023), we find that amenity dispersion amplifies inequality: firms that pay
well are also firms with better amenities. On average, a 1-S.D. increase in amenity
values is associated with a 0.325-S.D. increase in the firm pay premium.

Next, we implement our procedure for testing models of firm behavior. To formu-
late the exclusion restriction we use for our test, we leverage knowledge of platform
rules. We construct an instrument that captures quasi-random fluctuations in po-
tential on-platform market tightness over time and across sub-markets. Importantly,
our results are robust to the choice of instrument: versions of the test that use the
formulation of “BLP Instruments” (Berry, Levinsohn, and Pakes 1995) proposed by
Gandhi and Houde (2023) yield identical conclusions. As a baseline, we resoundingly
reject perfect competition against all imperfect competition alternatives.

In every version of our test, models that assume firms ignore strategic interactions
when setting wages outperform models that incorporate strategic interactions. This
finding has significant implications for our conclusions about the size of markdowns.
Under the preferred model, we find markdowns of 19.5% on average, while alternatives
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incorporating strategic interactions imply average markdowns of 26.6%. We also
find large differences between models in implied productivity dispersion across firms.
Indeed, while firms with relatively better amenities are inferred to be more productive
under both alternatives, the slope of this relationship is over three times larger when
firms are assumed to incorporate strategic interactions. In the preferred model, firms
with the best amenities (+2σ) are 3.4% more productive than firms with the worst
amenities (−2σ). Under the alternative, that difference is 10.6%.

We then turn to testing whether firms exploit the substantial predictable differ-
ences in firm-specific labor supply across workers when making hiring decisions, and
find that they do not. Specifically, our test rejects models in which firms offer dif-
ferent wages to workers with homogeneous predicted productivity but heterogeneous
preferences in favor of models in which firms offer the same wage to all workers who
have the same level of predicted productivity. This is especially striking in the con-
text of an online job board designed to reduce information frictions in the search and
matching process. This finding also has significant implications for the labor market:
assuming firms’ wage offers price in predictable differences in worker preferences im-
plies that the offers firms make to the workers who most value their amenities are
marked down 3.0pp more than the offers they make to workers who least value them.

This paper contributes to a growing literature that employs tools from IO to study
the nature and consequences of employers’ labor market power. Card et al. (2018)
and Lamadon, Mogstad, and Setzler (2022) consider models in which firms are as-
sumed to be monopsonistically competitive: firms internalize upward-sloping labor
supply, but do not interact strategically. Berger, Herkenhoff, and Mongey (2022)
and Jarosch, Nimczik, and Sorkin (2023), on the other hand, consider models of
non-atomistic firms that compete in local oligopolies. But while researchers have in-
creasingly adopted modeling frameworks from IO to estimate employers’ labor market
power, they have not adapted the methods developed in IO to test between models
of wage-setting conduct (Berry and Haile 2014; Backus, Conlon, and Sinkinson 2021;
Duarte et al. 2023). The closest contribution is Delabastita and Rubens (2024), who
use detailed data to estimate production functions for, and identify collusive wage-
setting conduct of, Belgian coal firms. This approach allows for direct estimation of
wage markdowns without relying on conduct assumptions (Yeh, Macaluso, and Her-
shbein (2022) also use the production function approach to measure wage markdowns
of U.S. manufacturing firms, but do not test between conduct alternatives). How-
ever, it is often infeasible to obtain production data and credibly estimate production
functions. Our strategy, which is complementary to their approach, does not rely
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on estimating markdowns independent of conduct assumptions and can therefore be
implemented in settings in which production function estimates are not available.

Our paper also contributes to the broader literature exploring the nature of imper-
fect competition in labor markets (Boal and Ransom 1997; Manning 2005; Bhaskar,
Manning, and To 2002). A number of recent studies have examined the relationship
between measures of market structure—typically, concentration measures like the
Herfindahl–Hirschman Index—and wages across markets in order to gauge the extent
of firms’ wage-setting power (Azar et al. 2020; Schubert, Stansbury, and Taska 2022;
Arnold 2021). These analyses echo the “Structure-Conduct-Performance” paradigm
(Robinson 1933; Chamberlain 1933; Bain 1951), which posits that firm conduct is
dictated by market structure (that is, a firm’s optimization problem is a determin-
istic function of the distribution of its competitors). But since wages and market
structure are joint outcomes in models of labor markets, it is both conceptually and
practically difficult to find instruments that affect wages only through their effect on
market structure (Berry 2021; Schmalensee 1989). Our method avoids these endo-
geneity issues by characterizing firms’ exercise of wage-setting power without relying
on an assumed equivalence between (observed) market structure and conduct.

Next, our paper contributes to the literature on estimating non-wage amenities
(Rosen 1986). While recent papers have leveraged experimental settings to estimate
the value of non-wage amenities (Mas and Pallais 2017; Wiswall and Zafar 2018),
our unique data allows us to study the decisions of workers in a real-world, high-
stakes environment. Sorkin (2018), Taber and Vejlin (2020), and Lagos (2021) use
revealed preference arguments to infer amenity values from worker flows in matched
employer-employee data. We similarly estimate amenity values by aggregating work-
ers’ revealed preferences. However, since we observe all options available to workers
on the platform, we can avoid imposing restrictive assumptions on their choice sets.

Finally, our paper contributes to a recent literature examining the nature of com-
petition on online platforms. Use of these platforms has grown substantially: for
instance, online search is now the most widely used job-search method in the U.S.
(Faberman and Kudlyak 2016). We propose models of imperfect competition adapted
to online settings, combining the characteristics of online auction marketplaces and
terrestrial labor markets. The closest paper in this literature is Azar, Berry, and
Marinescu (2022), who gauge the potential market power of employers by estimating
labor supply to individual firms on a large, online job board using discrete choice
methods. Our paper complements theirs by further characterizing the nature of hor-
izontal preference differentiation and explicitly testing between models of conduct.
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2 Setting and Data

2.1 Market description

Estimates of firm-specific labor supply curves are a necessary input for testing between
models of wage-setting conduct. A key limitation of the literature estimating labor
supply to differentiated firms is that workers’ choice sets are rarely observed, especially
in high-stakes, real-world environments. Because of this, existing estimates of worker
preferences are either computed in surveys and lab environments (Wiswall and Zafar
2018; Mas and Pallais 2017), or reliant on strong assumptions applied to observational
data. In survey and experimental settings, sample sizes and external validity can
be limited. In observational settings, estimates may be confounded by unobserved
differences in workers’ choice sets, leading to erroneous inferences about their options.
To overcome these limitations, we use unique data from Hired.com, which is a large
online recruitment platform for workers and firms in the tech sector. Two features of
the recruitment process on Hired.com are particularly relevant.

First, wage bargaining on Hired.com is high-stakes: the average candidate on the
platform is a software engineer living in San Francisco with 11.4 years of experi-
ence looking for a full-time job with an expected salary of $139,000. Candidates on
Hired.com are highly qualified: 98.9% have at least a college degree (with 51.9% hav-
ing additionally completed some form of graduate education), and 10.8% have prior
experience at a FAANG company. Most candidates are engaging in on-the-job search:
74.9% report being currently employed. We report additional summary statistics for
both candidates and firms in Online Appendix Table B.1.

Second, the recruitment process on Hired.com allows us to cleanly identify can-
didates’ choice sets, as well as the full set of candidate characteristics firms observe
when deciding whether to send interview requests. Intuitively, this property of the
data comes from the unique timeline of recruitment on Hired.com: companies apply to
candidates based on their profiles, and candidates decide whether or not to interview
with companies based on the job descriptions and bid salaries they receive. Impor-
tantly, candidates have no way to directly view and apply to job postings without
receiving an interview request. As a result, we know the choice set of each candidate
on Hired.com (the set of all the firms that apply to them) and the choices candidates
make given their options (their decision to accept or reject each interview request).

Formally, the recruitment process can be divided into three steps, as illustrated in
Figure 1. First, candidates create a profile that contains standardized resume entries
(education, past experience, etc.) as well as the salary that the candidate would
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Figure 1: Timeline of the Recruitment Process on Hired.com

time

Supply side Demand side Demand meets supply

+ Equity (Optional)

Candidate 
creates profile

Ask salary

Company sends 
an interview 

request

If the company wants 
to hire the candidate

Bid salary

Interview

If candidate accepts 
the request

Final salary

Hired

If the candidate 
accepts the offer

Job offer

Note: This figure depicts the timeline of a recruitment on Hired.com. Salaries that are captured on
the platform are denoted in red. The steps of the process, from profile creation to hiring, are colored
blue. We do not have metadata from companies on the interview process.

prefer to make: the ask salary.2 Second, firms get access to candidate profiles that
match standard requirements for the job they want to fill (i.e., job title, experience,
and location). To apply for an interview with a candidate, the company sends them a
message—the interview request—that typically contains a basic description of the job
as well as, crucially, the salary at which they would be willing to hire the candidate:
the bid salary.3 Third, Hired.com records whether the candidate accepts or rejects the
interview request. While interviews are conducted outside of the platform, Hired.com
gathers information on whether the company makes a final offer of employment to
the candidate and, if the candidate is hired, at which final salary.4 Importantly, the

2. See Roussille (2024) Appendix Table B.1 for a detailed description of every variable listed
on a candidate’s profile. In short, every profile includes the current and desired location(s) of the
candidate, their desired job title (software engineering, web design, product management, etc.), their
experience in this job, their top skills, their education, their work history (i.e., firms they worked at),
their contract preferences (remote or on-site, contract or full-time), as well as their search status,
which describes whether the candidate is actively searching or simply exploring new opportunities.
The ask salary is prominently featured on all profiles since it is a required field.

3. See Roussille (2024) for details on the typical interview request messages sent by companies.
4. While we can’t guarantee that all final offers are recorded correctly, there are a number of

features that enable high-quality data all the way to the final offer. First, in the time period of this
study, Hired.com was paid by most firms only if the firm made a final hire. Therefore, the platform
had strong incentives to ensure that firms report these final hires. Second, it is quite easy for Hired
to detect fraud (i.e. a match made on the platform that results in a hire outside of it). Indeed, Hired
records all the profiles interviewed by the firm, and most firms have a career page with their current
employees. Therefore, checking interview records against hires is quite straightforward. Finally, a
one-time fraud could result in the high cost of being kicked out indefinitely from Hired.
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bid salary is non-binding, so the bid and final salaries may differ.
When modeling the recruitment process on Hired.com, we abstract from dynamic

considerations for several reasons. Candidate profiles are only visible to firms for two
weeks by default, and so candidates collect and consider bids over a short time frame.
The median candidate who receives multiple bids collects those bids within a single
week. Further, we find strong evidence that firms send most interview requests for
the same job concurrently: the median time difference between sequential bids for
the same job is about 13 minutes. Finally, firms do not observe the remaining time
candidates have on the platform and thus cannot bid strategically over time.

2.2 Sample restrictions: connected set

As is standard in the literature on firm fixed effects (Sorkin 2018), we are only able
to estimate amenity values for firms that are members of a connected set. To be a
member of this set, a firm must have been both revealed-preferred to at least one
member of the set, and have been revealed-dispreferred to at least one member of
the set. Candidates in San Francisco represent 76% of all interview requests on
the platform. Consequently, our analysis focuses on that subset of workers, which
represents the largest homogeneous labor market on the platform. For this segment
of the platform, 2,121 companies sent out 267,940 bids to 44,321 candidates, averaging
15.8 bids per job and 4.3 bids per candidate. 1,649 companies meet the requirements
for inclusion in the connected set. After making these restrictions, we retain 124,075
bids made to 14,344 candidates, averaging 9.8 bids per job and 7.1 bids per candidate.
Online Appendix Table B.1 reports summary statistics for firms and workers in both
the full sample and the connected set.

2.3 Stylized facts

Significant heterogeneity in bid acceptance. Panel (a) of Figure 2 plots the dis-
tribution of the share of each firm’s bids that are accepted. There are two important
features of this distribution. First, perhaps because most candidates are currently
employed, rejections are common: on average, candidates only accept 60.5% of the
interview requests they receive. Second, there is significant heterogeneity across com-
panies in the likelihood that a request is accepted: 10.2% of firms see less than 40% of
their requests accepted, while 16.2% of firms see more than 75% of their requests ac-
cepted. This motivates us to model candidates’ outside options as a key parameter in
their interview decision (Section 3.1). Additionally, the wide variation in acceptance
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rates across firms is suggestive of significant vertical (between-firm) differentiation,
which motivates our revealed-preference approach.

Reference-dependence of labor supply. Panel (b) of Figure 2 plots the proba-
bility that an interview request is accepted as a function of the ratio of the bid salary
to the ask salary. Unsurprisingly, higher bids are associated with a higher acceptance
probability. But the slope of this relationship is steeper when bids are below the ask
than when bids are above the ask: on average, the probability a bid is accepted when
it is 10% less than the ask is roughly 10-15pp lower than when a bid is made exactly
at the ask. However, the probability a bid is accepted when it is 10% more than
the ask is only about 5pp higher than when the bid equals the ask. We take this
pattern as suggestive evidence that candidates’ labor supply is reference-dependent
in their ask. Although it is not possible to definitively place a structural interpreta-
tion on these patterns without accounting for selection, we bolster this interpretation
by using additional information that records the candidates’ reason for rejecting a
bid, which is available for a subset of the observations.5 Panel (c) of Figure 2 plots
the probability that a candidate selects “insufficient compensation” as the reason for
rejecting a bid as a function of the ratio of bid to ask. The relationship between this
probability and the bid to ask ratio is sharply kinked at bid=ask: the slope (and
level) is almost exactly zero when bid>ask, and is strongly negative when bid<ask.
In practice, this means that while virtually no bid is rejected due to “insufficient
compensation” when the bid is above the ask, if the bid is, for instance, 20% below
the ask, roughly 25% of interview rejections are due to “insufficient compensation.”
We refer to this phenomenon as “kinked labor supply” and formally allow for labor
supply elasticities to vary above and below the ask in our model.6

Individualized pricing and the absence of wage posting. While wage post-
ing is pervasive in many labor markets, it is not a feature of firm behavior in our
setting. The average within-job standard deviation of bid salaries is $19,697, which
indicates that firms are willing to offer a wide range of salaries to candidates for the
same vacancy. Indeed, only 2.6% of jobs offer the same bid salary to all candidates.
Further, the bids firms make to candidates are highly individualized: 77.4% of bids
are made exactly at the candidates’ ask. Panel (d) of Figure 2 synthesizes these two

5. While this field is optional, 55% of candidates do fill it out.
6. Leveraging a survey of 6,000 job seekers in New Jersey, Figure 3 in Hall and Mueller (2018)

plots the job offer acceptance frequency as a function of the difference between the log hourly offered
wage and the log hourly reservation wage. A clear kink is observed at offered = reservation.
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facts. It plots the relationship between the bid premium—the difference between bid
and ask salaries—and the deviation of the ask from the average ask of candidates
who receive bids for the same job. This figure illustrates the substantial variation
in bid salaries for the same job, driven by the large underlying variation in the ask
salaries of candidates who receive bids for that job. If firms posted wages, they would
offer every candidate the same bid salary, and the points would lie on the -45-degree
red line. Empirically, we observe that the slope of the relationship is dramatically
flatter than this “full compression” line: changes in the ask are almost entirely offset
by changes in the bid. This indicates that, even for a given job, firms increase their
bids almost one-for-one with candidates’ asks. We incorporate these patterns in our
model of labor demand in two ways. First, firms internalize the reference-dependence
of candidates’ labor supply around the ask. This generates an incentive for firms to
bunch at the kink, and rationalizes the large mass of offers made at ask. Second, we
model firms’ bid decisions as a fully individualized process, allowing for systematic
and idiosyncratic components of match-specific productivity. A priori, it is not possi-
ble to say whether the sizeable within-job variation in bids is driven by variation not
only in productivity,7 but also in preferences across workers. This motivates our test
between these alternatives.

Bids are non-binding, but sticky. The bid salary is what firms declare they are
willing to pay the candidate solely based on their profile, before any interaction with
them. The final salary is offered to a candidate at the hiring stage. The data con-
tain indicator variables that record both whether the firm extended a final offer and
whether the candidate accepted the final offer. We observe the salary attached to
final offers that were accepted. Given that companies are not contractually bound
by their bids, final salaries may differ from bids. However, firms effectively commit
to making final offers that are close to their initial bids. Panel (e) of Figure 2 shows
the relationship between bids and final offers for the subset of candidates that receive
a final offer. Strikingly, this relationship is very linear, with a slope close to one.
Furthermore, the bivariate R2 is 0.75. About a third of all final offers are identical to
the bid, and close to three-quarters of all final offers are within 10% of the bid. We
correspondingly make the simplifying assumption that the expectation of the final
salary is equal to the bid for both candidates and firms, such that we can estimate
our model on the much richer data from the interview stage.

7. Roussille (2024) shows that the positive correlation between bids and asks conditional on
observables is consistent with models in which the ask salary is a signal of candidate quality.
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Figure 2: Empirical Patterns in Bid and Ask Salaries

(a) Fraction of Interview Requests Accepted

(b) Kink at Bid = Ask (c) Monetary Concerns Drive Rejections < Ask

(d) Large Range of Bid Salaries for Same Job (e) Bids are Sticky in Expectation

Note: Panel (a) shows the distribution of the share of accepted interview requests for a given firm.
Panel (b) plots the average probability that a candidate accepts an interview request against the
ratio of the bid to ask salary. Panel (c) plots the average probability that a candidate accepts an
interview request against the ratio of the bid to ask salary. Both Panel (b) and (c) have a vertical
grey dashed line at Bid=Ask. Panel (d) plots the relationship between the premium—the difference
between (log) bid and ask salary—and the within-job deviation of the (log) ask salary. Panel (e)
plots the relationship between the bid and the final offer sent to candidates.
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3 Defining Firm Wage-Setting Conduct

In order to particularize our definition of conduct—how firms determine which workers
to hire and how much to pay them—to our setting, we first specify a general model
of labor supply and demand on Hired.com. Candidates i = 1, . . . , N post resume
information xi (which includes their ask ai)8 before interacting with firms. Firms
j = 1, . . . , J have observable characteristics zj. The outside option is denoted by
j = 0. Firms browse active candidate profiles and decide, for each candidate, whether
to send an interview request. We denote the bid salary of firm j on candidate i by
bij, and let Bij equal one if firm j sends an interview request to candidate i. After a
candidate receives it, she decides whether to accept (and thereby move forward with
the recruitment process) or reject the request. After the interview, the firm can make
a final offer of employment to the candidate.

Our analysis focuses on the interview stage of the recruitment process. To specify
a tractable model of firm and candidate behavior at this initial stage, we make sev-
eral simplifying assumptions about the final stages of the process. In particular, we
assume that firms do not treat bids as cheap talk—rather, firms credibly expect to
pay their bids, should they decide to make a final offer. In practice, this assumption
is an accurate description of firm behavior as documented in Panel (e) of Figure 2
and described in Section 2.3.9 We also assume that candidates’ choices at the inter-
view request and final offer stages are governed by the same preferences. While our
framework is consistent with certain forms of updating on the part of candidates after
interviews take place, we remain agnostic about those mechanisms.

3.1 Labor Supply

We assume that the indirect utility candidate i associates with firm j at bid bij is:

Vij = u(bij, ai) + Ξij, where Ξij = Aj(Qi) + ξij, (1)

where u(bij, ai) is the monetary component of utility and Ξij is the non-monetary
component of utility. Building on the stylized facts documented in Section 2.3, we

8. The variables in xi, i.e. the resume characteristics on the candidate’s profile, are listed in
Appendix B.1. of Roussille (2024)

9. Horton, Johari, and Kircher (2021) also highlight the informative content of cheap talk about
wages.
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first assume that labor supply is reference-dependent in the ask: u(b, a) is continuous,
strictly increasing, and twice continuously differentiable in its first argument, except
at the point b = a, where limb→a− ∂u(b, a)/∂b > limb→a+ ∂u(b, a)/∂b. We further
assume that the ask serves as a sufficient statistic for the monetary component asso-
ciated with the outside option, setting bi0 = ai and normalizing u(a, a) = 0.10 The
indirect utility associated with the outside option is therefore given by Vi0 = Ξi0.

The non-monetary component of utility Ξij can be further decomposed into the
sum of a systematic amenity value Aj(Qi) and an idiosyncratic taste shock ξij. The
amenity value i associates with j is determined by i’s latent preference type Qi. Can-
didates i and ` with Qi = Q` share a common mean valuation of amenities at all
firms. Both preference types Qi and taste shocks ξij are private information: they are
observed by workers, but not by firms. However, the distribution of types FQ may
depend on observables xi: FQ|X 6= FQ. So, while Qi is private information, it may be
partially revealed to firms by xi. By contrast, the ξij are iid draws from a probability
distribution that is independent of xi: ξij iid∼ Fξ(·), where Fξ|X = Fξ. For now, we
need only assume that Fξ admits a continuous, log-concave density fξ(·) with support
on the full real line. We later assume that the ξij are distributed according to the
Type-1 Extreme Value distribution (e.g. multinomial logit).

Candidate i will accept firm j’s interview request if and only if the utility associ-
ated with that request exceeds that of her outside option:

Dij = Bij × 1[Vij ≥ Vi0].

Candidates’ final labor supply decision is given by choosing the final offer with the
highest indirect utility. We assume the indirect utility i associates with a final offer
from j is equal to Vij, such that the same shocks that enter candidates’ interview de-
cisions also govern their final job choice. Because we focus on the ex-ante perspective
of firms formulating bids, we view this as a simplifying abstraction.

3.2 Labor Demand

For each candidate i it encounters, firm j formulates an optimal bid b∗ij to maximize
the expected option value of an interview request, given by the function πij(b). Firms
decide to bid on candidates if the maximized value of that function surpasses a firm-

10. For the large fraction of workers on the platform engaging in on-the-job search, this assumption
can easily be justified if asks are formulated as a function of current salary. Unemployed workers
post lower asks even conditional on a rich set of covariates (the expected conditional gap is $8,366),
suggesting that their asks reflect relatively worse outside options.
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specific interview cost threshold cj:

b∗ij = arg max
b

πij(b), and Bij = 1
[
πij(b∗ij) ≥ cj

]
. (2)

Realized bids are: bij = Bij × b∗ij, where bij = 0 if Bij = 0. The option value of
an interview request from firm j to candidate i depends upon both i’s labor supply
decision and i’s value to j. Encode i’s final labor supply decision, given j’s choice
of bid b, via the potential outcome D◦ij(b), a binary random variable that equals
one if i would accept j’s final offer of employment given j’s choice of bid salary
bij = b. Denote the maximum utility of the options available to i by V 1

i . Given our
assumptions about candidate preferences, we have:

D◦ij(b) = 1
[
Vij = V 1

i | bij = b
]
.

Denote the ex-post value firm j places on a match with candidate i as ε◦ij. Given
these definitions, πij(b) can be written as:

πij(b) = Eij
[
D◦ij(bij)× (ε◦ij − bij) | bij = b

]
,

where Eij[·] denotes an expectation taken over the information set of firm j when
it evaluates candidate i, which we denote by Ωij (and which may include firm-,
candidate-, and market-level variables). This objective function is nearly identical
to that of a bidder in a standard first-price auction. In a first-price auction, a bid-
der’s objective is to maximize her expected utility, where her bid affects both the net
payoff should she win (here, ε◦ij − b) and the probability that she wins the auction
(here, Eij[D◦ij(b)]). An “auction” on Hired.com differs from a standard first-price
auction, however, because the firm that submits the highest monetary bid is not
guaranteed to be the candidate’s top-ranked choice.

We make two additional assumptions that simplify the form of πij(b). Conditional
on Ωij, we assume: 1) potential outcomes D◦ij(b) and ex-post match values ε◦ij are
independent, and 2) ε◦ij is independent of the firm’s bid bij. Since all firms must
bid on candidates before the match value is revealed, the first assumption essentially
establishes the sufficiency of the observables available to the firm for forecasting match
values. It also rules out scenarios in which the event of winning the “auction” for
candidate i reveals information about other firms’ match values that is relevant to j’s
value (the “winner’s curse”). The second assumption rules out behavioral effects of
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increasing bids on the value of a match (e.g. efficiency wages). Together, they imply:

πij(b) = Prij
(
D◦ij(b) = 1

)
︸ ︷︷ ︸

,Gij(b)

×
(
Eij[ε◦ij]︸ ︷︷ ︸

,εij

−b
)
. (3)

The first term, Gij(b), is j’s forecast of i’s labor supply decision, which we refer to
as the firm’s beliefs (or win probability).11 The second term is the difference between
j’s forecast of i’s ex-post match value (or valuation), εij, and j’s bid.

3.3 Firm Conduct in Equilibrium

Before providing a precise definition of firm wage-setting conduct, we first define a
notion of equilibrium. We adopt a Bayes-Nash equilibrium concept, in which players’
actions are best responses given their beliefs, which are themselves consistent with
equilibrium play. We explicitly define equilibrium such that beliefs are consistent
conditional on the information firms use to construct those beliefs:

Definition 1 (Equilibrium). Given information sets {Ωij}N,Ji=1,j=1, a pure strategy
equilibrium is a set of tuples {bij(·), Gij(·)}N,Ji=1,j=1 satisfying:

(Optimality) bij(ε) is j’s best response for valuation ε given beliefs Gij(b):

bij(ε) =

arg maxb Gij(b)× (ε− b) if maxb Gij(b)× (ε− b) ≥ cj

0 otherwise.
(4)

(Consistency) Conditional on Ωij, firm j’s beliefs Gij(b) obey:

Gij(b) =
∫∫

Pr
(
u(b, ai) + Ξij = V 1

i | V 1
i = v,Qi = q

)
× dFV,Q

(
v, q | Ωij

)
, (5)

where FV,Q(·, · | Ωij) is the population joint CDF of V 1
i , Qi conditional on Ωij.

To operationalize a notion of conduct in our setting, it is useful to partition each
information set as Ωij = {ωVij , ω

Q
ij}, where ωVij and ωQij encode the information j uses

to forecast V 1
i and Qi, respectively. We write the joint CDF as:

FV,Q
(
v, q | Ωij

)
= FV |Q

(
v | Qi = q, ωVij

)
︸ ︷︷ ︸

=Fω
V |Q

×FQ
(
q | ωQij

)
︸ ︷︷ ︸

=Fω
Q

. (6)

11. We assume that firms’ beliefs are stationary, such that firms behave as if they are in a steady
state, as in Backus and Lewis (2020). We defer consideration of dynamics for future research.
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We can now provide a definition of firm wage-setting conduct in our setting:

Definition 2 (Conduct). Given the assumptions of Sections 3.1 and 3.2 and Def-
inition 1, a model of firm wage-setting conduct is defined by specifying the form of
firms’ beliefs, Gij(b):

• When markets are Imperfectly Competitive, firms’ beliefs are nondegener-
ate, and conduct is dictated by the contents of firms’ information sets Ωij =
{ωVij , ω

Q
ij}. We specify two alternatives for each component—firms are either:

– Not Predictive, with ωQij = ∅ such that F ω
Q = FQ; or Type Predictive,

with ωQij = xi such that F ω
Q = FQ|X ; and either:

– Monopsonistically Competitive, with bij,Aj /∈ ωVij such that ∂F ω
V |Q/∂b

= 0; or Oligopsonists, with bij,Aj ∈ ωVij such that ∂F ω
V |Q/∂b > 0.

• When markets are Perfectly Competitive, firms’ beliefs are degenerate: every
firm j believes that for each candidate i there exists a competitor whose valuation
is arbitrarily close to its own: Gij(b) ∝ 1[b ≥ εij].

Clearly, this notion of conduct does not encompass every interesting feature of
firms’ wage-setting behavior. However, our setting—in which firms are able to offer
fully individualized wages—is particularly well-suited for investigating how firms in-
corporate information about the distribution of preferences and competition into their
recruitment decisions. Online Appendix (hereafter Appendix) C uses a simple model
to illustrate the implications of our conduct assumptions and how the conceptual
framework of our study differs from those that relate market structure to wages.

The first conduct assumption we test concerns ωQij , the information firms use
to forecast types. This test is motivated by our assumption that observables may
partially reveal candidates’ preference types to firms. Whether firms do or do not
use this information to offer different wages to candidates with identical productivity
levels has been a matter of debate in the labor literature. For instance, Burdett
and Mortensen (1998) assume that firms are not type-predictive, leading to efficiency
losses that can be reduced by the introduction of a minimum wage. On the other hand,
Postel-Vinay and Robin (2002) assume that firms are more than type-predictive: they
are fully informed about the types of workers they meet, allowing them to engage
in classic first-degree price discrimination. More recently, Flinn and Mullins (2021)
analyze models in which firms differ in whether they commit to posted wages (akin to
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non-predictive conduct) or negotiate wages in response to outside offers (akin to type-
predictive conduct). Type predictiveness has important labor market implications: in
our setting, firms would make more offers and workers would capture a smaller share
of match surplus when firms are type-predictive relative to when they are not.12

The second conduct assumption we test concerns ωVij , and the nature of interac-
tions between vertically-differentiated firms. Under monopsonistic competition, firms
are differentiated but view themselves as atomistic relative to the market: they ignore
the effects of their behavior on the composite value of candidates’ option sets. This
assumption underlies a number of studies, including Card et al. (2018) and Lamadon,
Mogstad, and Setzler (2022). When firms are oligopsonists, on the other hand, they
actively incorporate the effects of their behavior on the distribution of options avail-
able to each candidate into their wage-setting decisions. Models of oligopsony, as in
Berger, Herkenhoff, and Mongey (2022) and Jarosch, Nimczik, and Sorkin (2023),
therefore feature strategic interactions between firms. Another distinction, as noted
in Berger, Herkenhoff, and Mongey (2022), is that, under monopsonistic competition,
structural firm-specific labor supply elasticities are equal to reduced-form elasticities.
In contrast, under oligopsony, they depend upon both the firms’ bid and the value of
its amenities, in addition to competitors’ bids and amenities.13

Finally, our model of perfectly competitive firms serves as a baseline against which
we can compare more complicated models of conduct that incorporate additional
sources of wage dispersion beyond differences in the marginal revenue product of
labor. Under perfect competition, firms bid their valuations: bij(ε) = ε.

4 A Test of Firm Wage-Setting Conduct

4.1 Setup: Testing via an Exclusion Restriction

Our objective is to determine which model of conduct best describes the true data-
generating process.14 To formulate our test, we first write εij as a function of observ-

12. Our notion of “type-predicitve” conduct is a form of third-degree price discrimination.
13. Our definition of oligopsonistic behavior encompasses both size- and differentiation-based mech-

anisms by which oligopsonists generate markdowns. Because firms place individual bids, however,
there is no sense in which they are “large” or “small” on the platform. This is unlike standard
Cournot or search-theoretic models of oligopsony, in which firms with larger employment or vacancy
shares have greater wage-setting power.
14. The models we consider are non-nested: “Broadly speaking, two models (or hypotheses) are

said to be ‘non-nested’ if neither can be obtained from the other by the imposition of appropriate
parametric restrictions or as a limit of a suitable approximation” (Pesaran 1990). In our setting,
models are non-nested as long as they generate distinct patterns of markdowns and selection that
are not co-linear with the determinants of εij .
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ables and a mean-zero idiosyncratic component νij iid∼ Fν(·) that is unrelated to those
observables by construction: εij = γj(xi, νij). We assume that there exists a trans-
formation of that function τ(·) such that τ(γj(·, ·)) is additively separable in those
components: τ(εij) = γ(xi, zj) + νij. The function γ(x, z) encodes the systematic
component of match values shared by candidates with xi = x at firms with zj = z.

To illustrate the intuition of our testing procedure, assume that Gij(b) is differ-
entiable for all b. Then, under the true conduct assumption, all bids bij must satisfy
the following first-order condition with equality:

τ
(
εij(bij)

)
= γ(xi, zj) + νij,

where εij(b) is the inverse bidding function: b = bij(εij(b)). This equation includes
only one source of error: the idiosyncratic component of firms’ valuations, νij. Since
the true model of conduct is unknown, in practice the true inverse bidding function
εij(·) is proxied by its counterpart under an assumed model of conduct m, εmij (·). If
m is misspecified, then this substitution introduces an additional error term:

τ
(
εmij (bij)

)
= γ(xi, zj) + νij + ζmij .

The presence of specification error suggests an intuitive conclusion: if labor supply is
determined in part by variables that are excluded from firms’ valuations (εij), then the
further a model is from the truth, the higher the correlation between those excluded
variables and the model’s residuals. In other words, if the true demand residuals (νij)
obey exclusion restrictions, then models can be compared by inspecting the degree
to which their estimated residuals violate those restrictions.

Following this logic, Berry and Haile (2014) establish that instruments that quasi-
randomly shift demand but do not shift (are excluded from) the marginal cost function
are necessary for conduct testing in product markets. Backus, Conlon, and Sinkinson
(2021) implement a test of conduct that formalizes this logic: under true conduct
assumptions, instruments that quasi-randomly shift markups but not marginal costs
should not be correlated with recovered idiosyncratic cost shocks. Likewise, we need
an instrument that quasi-randomly shifts labor supply but is excluded from firms’
valuations, such that it is uncorrelated with true demand residuals νij.15

15. Our setting differs in two key ways from that of Berry and Haile (2014). First, we use micro
data on individual choices, rather than market shares. Our granular data allows for identification
of labor supply parameters by conditioning on the information available to firms when they bid,
obviating the need for instruments for bids. Second, we analyze firms’ initial individualized bids
rather than uniform market prices. Our identification arguments therefore follow the empirical
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To construct the instrument, we leverage quasi-random, high-frequency variation
in potential on-platform tightness generated by Hired.com’s rules, both between and
within granular sub-markets.16 Specifically, we take advantage of the fact that can-
didate profiles go live in batches and remain searchable for only two weeks.17 This
generates large fluctuations in the number of candidates, relative to firms, that are
live on the platform in a particular sub-market at any given time. Since the pool
of candidates turns over every two weeks, variation in candidate quality between
two-week periods is not endogenously determined by platform conditions—and so
this variation should not be related to firms’ valuations (conditional on xi and zj).
However, this variation should affect firms’ expectations about the competition for i:
the fewer active candidates there are per active firm, the more bids those candidates
tend to receive. Our use of potential competition as an instrument mirrors papers
studying auctions with entry, which use exogenous variation in the potential number
of entrants across auctions for identification (e.g. Gentry and Li 2014).

Formally, let vow denote the number of firms searching for experience and occupa-
tion o during two-week period w and let uow be the number of candidates with active
profiles with experience and occupation o during two-week period w. The prevailing
level of (inverse) potential on-platform tightness when j bids on i is: tij = uoiwij

/voiwij
.

Our instrument exogeneity assumption can be formalised as:

Assumption 1. (Instrument Exogeneity) Conditional on worker and firm ob-
servables xi and zj, the instrument tij (potential tightness) obeys:

a) (Quasi-Random Assignment) Across ij pairs, the prevailing level of poten-
tial on-platform tightness is as-good-as randomly assigned, and

b) (Exclusion Restriction) Potential tightness is not a determinant of the id-
iosyncratic component of labor demand,

and so tij is (conditionally) independent of the idiosyncratic component of demand:

tij ⊥⊥ νij | xi, zj. (7)

auction literature (Guerre, Perrigne, and Vuong 2000; Backus and Lewis 2020) by assuming that
firms’ behavior must satisfy rational expectations rather than a market-clearing condition.
16. We call our instrument potential tightness because it measures the relative number of firms that

may bid on candidates during a two-week period, whether or not they actually decide to participate.
We define the instrument within occupation and experience bins because those categories are the
primary search fields recruiters use when browsing candidates.
17. Candidates can follow up with interview requests they received after their profiles are no longer

live, but can only collect those requests during the two week period. Candidates may appeal to
administrators to extend the time their profile is live, but in practice only a small fraction do so.
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Firms’ information sets ωVij include tij (as well as uoiwij
and voiwij

) in addition to xi
and zj. Variation in tightness thereby drives variation in predicted markdowns that is
independent of the determinants of firms’ valuations. We provide suggestive evidence
in favor of Assumption 1 by regressing the average ask salary of candidates in each
market and two-week period on our potential tightness instrument and market fixed
effects. Reassuringly, variation in the instrument is unrelated to variation in workers’
ask salaries within markets: the estimated coefficient on potential tightness is $52.13,
with a standard error of $117.78 (p = 0.658).

4.2 The Rivers and Vuong (2002) Test

We implement the pairwise testing procedure of Rivers and Vuong (2002) to compare
models of wage-setting conduct. That is, we consider each pair of models in turn and
select the model that has the lowest correlation between the excluded variables and the
model’s residuals. To operationalize this test, we specify a scalar moment condition
in the residuals of fitted models and excluded instruments, as in Backus, Conlon, and
Sinkinson (2021). Because we estimate demand under each conduct assumption via
maximum likelihood, our test is based on generalized residuals defined by the scores
of the likelihood (Gourieroux et al. 1987).

Formally, let smij`(Ψ) = ∂Lmij (Ψ)/∂ψ` denote the `-th component of the score vector
for observation ij and model m, given parameters Ψ. The scores may be written as
smij`(Ψ) = hmij (Ψ) · γ`(xi, zj), where hmij (Ψ) is the generalized residual and γ`(xi, zj) =
∂γ(xi, zj)/∂ψ`. The maximum likelihood estimate Ψ̂m is the vector that sets:

∑
ij:Bij=1

smij`
(
Ψ̂m

)
=

∑
ij:Bij=1

hmij
(
Ψ̂m

)
· γ`(xi, zj) = 0 ∀ `,

and so generalized residuals are constrained to be orthogonal to covariates.
The generalized residuals for each model can be easily computed by taking the

derivative of the individual likelihood contributions. We then compute the covariance
between the generalized residuals of model m and the excluded instrument tij as our
scalar moment/lack-of-fit measure:

Qm
s =

1
s

∑
ij:Bij=1

hmij
(
Ψ̂m

)
· tij

2

, (8)

where s = |{ij : Bij = 1}|.18 Under proper specification, the influence of the instru-

18. Qms can also be motivated as a version of the score test statistic for testing against the null
hypothesis that the coefficient on tij in the labor demand equation is zero.

21



ment on markdowns is completely summarized by the inverse bidding function, and
so there should be zero correlation between the instrument and the generalized resid-
uals.19 Following Backus, Conlon, and Sinkinson (2021),20 we formulate a pairwise
statistic for testing between models m1 and m2 as an appropriately-scaled difference
between Qm1

s and Qm2
s , which Rivers and Vuong (2002) show to be asymptotically

normal under the null hypothesis that m1 and m2 are asymptotically equivalent:

Tm1,m2
s = Qm1

s −Qm2
s

σ̂m1,m2
s /

√
s

D→ N (0, 1), (9)

where σ̂m1,m2
s is an estimate of the population variance of Qm1 − Qm2 . We compute

σ̂m1,m2
s /

√
s as the variance of Qm1

s − Qm2
s across bootstrap replications. Given a

significance level α with critical value cα, we reject the null hypothesis that m1 and
m2 are equivalent in favor of the alternative that m1 is asymptotically better than m2

when Tm1,m2
s < −cα, and vice versa if Tm1,m2

s > cα. If |Tm1,m2
s | ≤ cα, the test cannot

discriminate between the two models.

5 Identification and Estimation of Labor Supply and Demand

5.1 Labor Supply

Identification. Denote i’s offer set by: Bi = {bij, Bij}Jj=0. Our principal assumption
for the identification of preferences from choice data is:

Assumption 2. (Conditional Independence) Candidates’ types Qi are private
information, so firms decide whether and how much to bid on the basis of xi alone.
In other words, i’s offer set Bi is independent of her type Qi conditional on her xi:

Pr(Bi | Qi = q, xi) = Pr(Bi | xi). (10)

19. In Appendix G.2, we describe and implement an alternate testing procedure based on the Vuong
(1989) likelihood ratio test. While our version of the Rivers and Vuong (2002) test isolates only the
component of lack-of-fit directly correlated with the instrument, the alternate test combines all
sources of residual variation and can be thought of as an omnibus version of our lack-of-fit measure.
20. Backus, Conlon, and Sinkinson (2021) formulate their moment-based test statistic by interact-

ing residuals with an appropriate function of both the instrument and all other exogenous variables,
and connect their choice of that function to the literature on optimal instruments (Chamberlain
1987). In our setting, the formulation of such a function is complicated by selection and partial
identification issues. While not pursued here, the formulation of optimal instruments is a promising
avenue for future work.
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A consequence of Assumption 2 is that the distribution of candidate types conditional
on both Bi and xi is equal to the distribution of types conditional on xi alone:

Pr(Qi = q | Bi, xi) = Pr(Bi | Qi = q, xi) Pr(Qi = q | xi)
Pr(Bi | xi)

= Pr(Qi = q | xi).

Assumptions analogous to Assumption 2 are implausible in administrative data,
like linked employer-employee records, due to the various selection mechanisms at
play in the formation of equilibrium matches. But in our setting, firms are required
to make initial bids on the basis of candidate profiles alone—the same information
available to us—before they have the chance to interact with candidates. Further,
our data records not only the offers candidates accept, but also the ones they reject.

Next, denote i’s sets of accepted and rejected bids by B1
i ⊆ Bi and B0

i = Bi \ B1
i ,

respectively. The labor supply model of Section 3.1 implies that every option in B1
i is

revealed-preferred to every option in B0
i : minj∈B1

i
Vij ≥ maxk∈B0

i
Vik. We refer to this

event as a partial ordering of i’s offer set Bi, which we denote by B1
i � B0

i . We now
formalize two additional assumptions about the structure of preferences:

Assumption 3. (Mixture Model) The probability of observing any partial ordering
is described by a finite mixture model over latent preference types:

a) (Finite Support) The support of Qi is restricted to the integers 1, . . . , Q.
Denote the conditional probability of type membership by:

Pr(Qi = q | xi) , αq(xi). (11)

b) (Exclusion Restriction) Conditional on a candidate’s latent type Qi and Bi,
the probability of observing any partial ordering is independent of xi:

Pr
(
B1
i � B0

i | Bi, Qi = q, xi
)

= Pr
(
B1
i � B0

i | Bi, Qi = q
)
, Pq

(
B1
i � B0

i

)
. (12)

Assumption 3a is a modeling choice about the form of unobserved heterogeneity
in preferences over firms. Assumption 3b governs how preferences are related to
individual characteristics: these characteristics shift the distribution of types, but
provide no additional information about preferences conditional on those types. Note
that Assumption 3b is an implication of the labor supply model in Section 3.1.

Combining Assumptions 2 and 3, the log-integrated likelihood of i’s revealed par-
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tial ordering (given Bi and xi) is:21

L(B1
i � B0

i | Bi, xi) = log
 Q∑
q=1

αq(xi)× Pq
(
B1
i � B0

i

) .
Parameterization. In order to estimate preferences, we first specify a parameter-
ization of the labor supply model. We allow the monetary component of utility to
depend on candidate type and write it as:

uq(b, a) =
(
θq0 + θq1 · 1[b < a]

)
·
[

log(b)− log(a)
]

=

θq0 · log(b/a) if b ≥ a,(
θq0 + θq1

)
· log(b/a) if b < a,

and so uq(b, a) is continuous, but kinked, at b = a.22 We specify the distribution of
types as a multinomial logit in xi with parameter β:

Pr(Qiq = 1 | xi) = αq(xi | β) = exp(x′iβq)∑Q
q′=1 exp(x′iβq′)

.

Because Qi has finite support, we write Aj(Qi) = Q′iAj, where Aj is a Q× 1 vector
of type-specific mean amenity values at firm j with q-th component Aqj, and Qi is a
Q × 1 vector of type indicators with Qiq = 1 if Qi = q. Finally, we assume that the
distribution of taste shocks is extreme value type 1: ξij iid∼ EV1.

Estimation: First Step. We estimate labor supply parameters via a two-step
procedure. We first estimate type distribution parameters β and amenity values Aj

via maximum likelihood. Our strategy is based on a simple observation: if i accepts
an offer from j and rejects an offer from k when bij = bik, then by revealed preference:

Q′i(Aj −Ak) ≥ ξik − ξij. (13)

Candidates often have several offers at the same bid, most often equal to their ask or
at round numbers. Therefore, we construct the connected set of firms using a subset

21. Mixtures of random utility models (RUMs) of this form have been studied in both econometrics
and computer science/machine learning. In particular, Soufiani et al. (2013) establish identifiability
of a finite-mixture-of-types RUM for which the idiosyncratic error components follow a log-concave
distribution, as assumed in our model. Soufiani et al. (2013) also provide simulation evidence that
estimation methods can correctly recover the true number of underlying types.
22. Note that we have defined u(b, a) relative to the outside option: when b = a, log(b/a) =

log(1) = 0. When making utility comparisons between candidates, we add back the monetary
component associated with the outside option: uq(b, a) + θq0 · log(a).
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of bids S = {bij | bij > 0 and ∃ k 6= j s.t. bik = bij}. This subset contains more than
half of all bids. Making this restriction allows us to non-parametrically difference out
uq(b, a), thereby obviating the need for instruments for the wage: identification of
the Aqj does not rely on comparisons of offers with wages that may differ endoge-
nously. Plugging in estimates Âqj in the second step allows us to control for the key
unobserved confound when we turn to the estimation of labor supply elasticities.23

To derive the probability of observing an arbitrary partial ordering of firms, it
is useful to work with the re-parameterization ρqj ∝ exp(Aqj), with

∑J
j=1 ρqj = 1.

Let σ(·) : {1, . . . , J} → {1, . . . , J} denote a complete ranking of all J alternatives. A
multinomial logit model of rankings (also known as “exploded logit”, or Plackett-Luce
(Plackett 1975; Luce 1959)) yields the following likelihood:

Pr(σ(·) | ρq) =
J∏
r=1

ρqσ−1(r)∑J
s=r ρqσ−1(s)

.

One complication is that we only observe candidates’ partial orderings of firms, not
their complete ranking. Following Allison and Christakis (1994), we could compute
the probability of observing any particular partial ordering by summing over all lin-
ear orders that are consistent with that partial ordering. Even with a small number
of alternatives, however, this strategy is computationally intractable: the number of
concordant linear orders grows exponentially in the number of alternatives. Simula-
tion methods that sample linear orders (e.g. Liu et al. 2019) are likely to be slow,
and introduce additional sources of noise. We circumvent this issue by implementing
a novel numerical approximation to the partial order likelihood that greatly reduces
the computational burden of estimation. In Appendix D, we show that:

P
(
B1
i � B0

i | ρq
)

=
∫ 1

0

∏
j∈B1

i

(
1− vρqj/

∑
k∈B0

i
ρqk

)
dv. (14)

This expression, and its derivatives, can be quickly and accurately approximated by
numerical quadrature.24

As in Sorkin (2018) and Avery et al. (2013), the estimated rank of firm j depends
not on j’s raw acceptance probability, but rather on the composition of firms j was
revealed preferred to. Sorkin (2018) summarizes this property as a recursion: highly-

23. Using a two-step procedure allows us to sidestep the need for instruments for bid salaries, if
at the cost of the additional precision afforded by a one-step procedure that optimally combined
multiple sources of variation. In addition, our strategy allows us to isolate “clean” comparisons
without imposing additional assumptions necessary to justify instruments.
24. Appendix D provides details on the generalized EM-algorithm we use to estimate β and ρ.
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ranked firms are those that are revealed-preferred to other highly-ranked firms. Avery
et al. (2013) note that producing rankings in this way is robust to the strategic ma-
nipulations of the units being ranked—a key property in our setting.25

Estimation: Second Step. Next, we estimate the remaining labor supply elasticity
and outside option parameters Θ = {θ0,θ1,A0} via GMM using the full set of bids
made by firms in the connected set. We first construct model-implied probabilities of
accepting an interview request as a function of Θ, plugging in β̂ and ρ̂ from the first
step. Letting H(x) = exp(x)

1+exp(x) denote the logistic CDF, the model-based estimate of
Pr(Dij = 1 | bij, xi) given parameters Θ is:

m(bij, xi | Θ) = ∑Q
q=1 αq(xi | β̂) ·H

(
(θq0 + θq1 · 1[bij < ai]) · log(bij/ai) + Âqj − Aq0

)
.

We compute the sample analogues of moment conditions of the form:

E
[
xi · (Dij −m(bij, xi | Θ))

]
= 0 and E

[
zj · (Dij −m(bij, xi | Θ))

]
= 0,

stacking them in the vector m̂(Θ). Θ is estimated by minimizing the GMM criterion:

Θ̂ = arg min
Θ
m̂(Θ)′W m̂(Θ)

for a symmetric, positive-semidefinite weighting matrix W .26

5.2 Constructing Firms’ Beliefs

Identification. Definition 1 specified a general form for beliefs in equilibrium which
depends upon the probability that a firm’s bid ranks highest among all available
options. Given our multinomial logit assumption, that probability depends on the

inclusive value Λi, which takes the form Λi = log
( ∑
k:bik>0

exp
(
uQi

(bik, ai) +Q′iAk
))

:

Pr
(
Vij = V 1

i | Λi, bij = b
)

= exp
(
uQi

(b, ai) +Q′iAj
)/

exp
(
Λi

)
. (15)

25. While we do not present a formal proof of consistency here, parameter consistency and asymp-
totic normality of the MLE for similar models (pairwise comparisons with a single type) has been
established under sequences in which the number of items to be ranked (here, the number of firms
J) grows asymptotically, avoiding the usual incidental parameters problem (Simons and Yao 1999).
26. We setW =W (Θ) (Continuously-Updated GMM). Two-step GMM estimates are very similar.
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Using this expression, we may re-write firms’ beliefs as:

Gij(b) =
Q∑
q=1

αq(ωQij) ·
∫ [

exp
(
uq(b, ai) + Aqj

)/
exp

(
λ
)]
dFΛ|Q

(
λ | Qi = q, ωVij

)
.

In the classic first-price auction setting, Gij(b) is nonparametrically identified by
the observed distribution of bids when bidders have rational expectations: because
the seller accepts the highest bid, the empirical CDF of winning bids can be used as
an estimate of Gij(b). This is the basic intuition of the approach in Guerre, Perrigne,
and Vuong (2000) (GPV). Our strategy extends the logic of GPV to a setting where
Gij(b) depends upon both the monetary and non-monetary components of the bid.

Estimation. We first construct inclusive values Λi using our labor supply parameter
estimates. We then use the empirical distribution of Λi to construct approxima-
tions to Gij(b) under each model of conduct. A given model of conduct is defined
as a combination of assumptions about 1) firms’ beliefs about the distribution of
Λiq = Λi | Qi = q and 2) firms’ beliefs about the distribution of preference types Qi.

Monopsonistic Competition vs. Oligopsony: Monopsonistically-competitive
firms do not account for the contribution of their own bid to the inclusive value
Λi—in other words, {bij,Aj} 6∈ ωVij . Under this assumption, firms’ beliefs are:

Gij(b) =
Q∑
q=1

αq(ωQij) ·
(
exp

(
uq(b, ai) + Aqj

)
× E

[
exp

(
− Λiq

)
| ωVij

])
. (16)

Since firms are assumed to have rational expectations conditional on ωVij , the quantity
E[exp(−Λiq) | ωVij ] is identified and can be estimated by constructing the sample con-
ditional expectation of exp(−Λiq) given the variables contained in ωVij (which include
xi, zj, and market-level covariates).27

Oligopsonistic firms accurately account for the contribution of their bid to the
inclusive value Λi. Under this assumption, the distribution of inclusive values con-
ditional on ωVij is given by Λiq | ωVij ∼ exp(uq(bij, ai) + Aqj) + exp(Λ−jiq ), where
Λ−jiq = log(∑k 6=j:Bik=1 exp(uq(bik, ai) + Aqk)) denotes i’s leave-j-out inclusive value.

27. When there are no differences in labor supply elasticites by preference type (θq0 = θ0 and θq1 =
θ1 for all q), the beliefs of monopsonistically-competitive firms are proportional to (b/ai)θ0+θ11[b<ai],
and markdowns are a constant fraction of the wage on either side of bij = ai: θ0

1+θ0
when bij > ai,

and θ0+θ1
1+θ0+θ1

when bij < ai. When bij = ai, µmij = ai/εij ∈
[
θ0

1+θ0
, θ0+θ1

1+θ0+θ1

]
.
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Denote the probability distribution of Λ−jiq by FΛ−j
q
. Firms’ beliefs are then:

Gij(b) =
Q∑
q=1

αq(ωQij) ·
∫  exp

(
uq(b, ai) + Aqj

)
exp

(
uq(bij, ai) + Aqj) + exp

(
λ
) × dFΛ−j

q

(
λ | ωVij

) . (17)

Again, since firms’ beliefs are assumed to be consistent, FΛ−j
q

(
λ | ωVij

)
is identified and

can be estimated by constructing the empirical distribution of leave-one-out inclusive
values in the sample conditional on the variables in ωVij . These estimates can then be
used to construct a numerical approximation to the integral over the distribution of
leave-j-out inclusive values.28

Type Predictive vs. Not Predictive: Type-predictive firms use observed profile
characteristics xi to forecast candidate types (ωQij = xi). In this case, we approxi-
mate firms’ beliefs using the estimated prior over types, αq(ωQij) = αq(xi | β̂). Not-
predictive firms do not use observed profile characteristics xi to forecast candidate
types (ωQij = ∅). In this case, we assume that firms weight type-specific win probabili-
ties by the average probability of type membership, αq(ωQij) = αq = 1

N

∑N
i=1 αq(xi | β̂).

We approximate to Gij(b) under all four combinations of these assumptions: {Monop-
sonistic Competition, Oligopsony} × {Type Predictive, Not Predictive}.

5.3 Labor Demand

Identification: Let Gm
ij (b) denote firms’ beliefs under model m. It is useful to return

to the case where Gm
ij (b) is differentiable, with derivative gmij (b). As before, bids must

satisfy the following first-order condition with equality in this case:

εmij (b) = b+
Gm
ij (b)

gmij (b) = γmj (xi, νmij ).29 (18)

Crucially, given a choice of modelm and labor supply parameters, the inverse bidding
function is known: in a Bayes-Nash Equilibrium, valuations are “revealed” by the
bid. If the function εmij (·) is an injection, then a unique valuation εmij = εmij (bij) can be
inferred for every bid bij. Conditional moment restrictions of the form E[νmij | Ωij] = 0

28. Unlike monopsonistic competition, there is no simple closed-form expression for markdowns in
the oligopsony case when labor supply elasticities do not vary by type.
29. Labor economists may be more familiar with the equivalent formulation of the firms’ first-order

condition in terms of a multiplicative markdown µmij (b) expressed as a function of the elasticity of
labor supply to the firm: µmij (b) = ηmij (b)/(1 + ηmij (b)), where ηmij (b) = b · gmij (b)/Gmij (b).
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can then be used to estimate γmj (xi, νij) (e.g. by regressing εmij on flexible functions of
xi and zj). The parameters that govern γmj (·, ·) are identified given sufficient variation
in both εmij and covariates. This approach is taken by Backus, Conlon, and Sinkinson
(2021) in their analysis of the common-ownership hypothesis.

Our setting differs from this example in two important ways, both of which moti-
vate our maximum likelihood framework. First, Gm

ij (b) is not differentiable at b = a

and so the first-order condition need not hold at that point. Appendix E establishes
that bidding strategies bmij (·) and option values πm∗ij (·) are nevertheless continuous,
monotonic functions in εij.30 Bids therefore partially identify valuations, motivating
our use of a Tobit-style likelihood: bij 6= ai maps to a unique valuation, while bij = ai

maps to an interval of possible valuations [εm−ij , εm+
ij ]. Second, selection is a key fea-

ture of our setting: firms only bid on candidates for whom πm∗ij (bmij (εij)) ≥ cj. The
conditional moment restriction E[νmij | Ωij] = 0 therefore cannot be used to estimate
the labor demand parameters, since E[νmij | Ωij] > 0 when bij > 0.

Selection Correction and Estimation: We implement a selection correction using
the fact that for each m, bids reveal not only εij, but also the maximized value of
firms’ objective functions (see Appendix E). When bij 6= ai, we construct the implied
option value under model m, and when bij = ai, we construct an upper bound on
that quantity. We denote these values by π̂m∗ij , and use them to construct a consistent
estimate of each firm j’s interview cost threshold for each m by setting:

ĉmj = min
i:Bij=1

π̂m∗ij
a.s.→ cmj . (19)

The consistency of our estimate of cj necessarily depends upon the number of obser-
vations per firm growing without bound. See Appendix F for a proof of this result.

Using this estimate, we can compute a lower bound on the valuation associated
with each bid, which we use to implement a selection correction. Because πm∗ij (·) is a
strictly increasing function, there is a unique lower-bound valuation εmij at which firm
j is indifferent between bidding and not bidding on candidate i. This lower bound
controls the selection into bidding: employer j must draw a valuation of at least εmij
to make a bid on candidate i, and so the distribution of valuations is censored from
below by εmij . We construct candidate-specific lower bounds by numerically inverting

30. This is due to the log-concavity of Fξ and shape restrictions on u(b, a). In particular, bmij (·) is
strictly increasing in εij outside an interval [εm−ij , εm+

ij ], and is equal to ai when εij is inside that
interval, while πm∗ij (·) is strictly increasing over all εij .
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the option value function: ε̂mij is the number that sets πm∗ij
(
ε̂mij
)

= ĉmj . We use these
lower bound estimates to construct the likelihood contribution of each bid:

Lmij (Ψm) = Pr
(
εij = εmij (bij) | εij ≥ ε̂mij , Ψm

)1[bij 6=ai]
× Pr

(
εij ∈ [εm−ij , εm+

ij ] | εij ≥ ε̂mij , Ψm
)1[bij=ai]

=
fε

(
εmij (bij); Ψm

)
1− Fε

(
ε̂mij ; Ψm

)
1[bij 6=ai]

×

Fε
(
εm+
ij ; Ψm

)
− Fε

(
max(εm−ij , ε̂mij ); Ψm

)
1− Fε

(
ε̂mij ; Ψm

)
1[bij=ai]

, (20)

where Ψm denotes the parameters for modelm, fε(·; Ψm) is the density of εij, Fε(·; Ψm)
is the CDF of εij, εmij (·) is the inverse bidding function for model m, and εm+

ij and εm−ij
are, respectively, the model-implied upper and lower bounds on εij when bij = ai.31

Parameterization: We make the following assumptions about the functional forms
of γj(xi, νij) and the distribution of νij:

γj(xi, νij) = exp
(
z′jΓxi + νij

)
, z′jΓxi =

∑
k

∑
`

γk`zjkxi`, and νij
iid∼ N(0, σν).

where both xi and zj include a constant (such that z′jΓxi includes a constant, and all
main effects and interactions of xi and zj). For each model m, we estimate Γm and
σmν by maximizing the log-likelihood of the full set of bids in the analysis sample.

6 Results

6.1 Rejecting the Single Type Model of Labor Supply

We estimate several versions of the labor supply model in order to specify the number
of latent preference types Q as well as how type membership is related to candidate
observables. For each pair of models under each method of clustering workers into
types, we compute standard likelihood ratio statistics and compute the appropriate χ2

p-value to test against the null hypothesis that the model with q types is equivalent
to the model with q − 1 types. In addition to formal likelihood ratio (LR) statis-
tics, we also compute a more directly-interpretable “goodness-of-fit” (GoF) statistic
for each model. This statistic is simply the fraction of pairwise revealed-preference
comparisons that are concordant with the estimated rankings:

31. Our approach—concentrating cj out of the likelihood by computing the minimum order
statistic—is similar to that of Donald and Paarsch 1993; 1996; 2002, who consider models in the
classic procurement auction setting. Given m, the cj are functions of only the labor supply pa-
rameters, which we treat as data. Because the cj do not depend upon any of the labor demand
parameters, our procedure yields a proper likelihood (unlike some of the cases they consider).
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Table 1: Candidate Preference Model Goodness-of-Fit

(1) (2) (3)
# Types Split on Gender Split on Experience Model-Based Clusters

(q) Log L. pq�q−1 GOF Log L. pq�q−1 GOF Log L. pq�q−1 GOF

1 -47,207 - 0.677 -47,207 - 0.677 -47,207 - 0.677
2 -46,441 0.999 0.685 -46,287 0.015 0.687 -45,244 <0.001 0.744
3 - - - - - - -44,298 0.001 0.772
4 - - - - - - -43,507 0.987 0.798

Number of: Firms: 1,649 Candidates: 14,344 Comparisons: 235,827

Note: This table reports maximized log likelihoods (Log L.), likelihood ratio test p-values (pq�q−1),
and goodness-of-fit (GOF) measures to adjudicate between labor supply models with different num-
bers of types. Each numbered group of columns represents a different way to cluster candidates into
preference types. The GOF statistic is calculated as the fraction of pairwise comparisons correctly
predicted by the model, E

[(
Âj(Qi) > Âk(Qi)

)
×
(
j �i k

)]
, and p-values are calculated against the

null hypothesis that the model with q types is equivalent to the model with q − 1 types.

GoF = N−1
pw

N∑
i=1

Q∑
q=1

∑
j∈B1

i

∑
k∈B0

i

(
αq(xi | β̂) · 1[Âqj ≥ Âqk]

)
,

where Npw is the total number of pairwise comparisons implied by revealed preference.
Table 1 reports these goodness-of-fit statistics for several versions of our labor

supply model. Each row corresponds to a number of types (from one to four) and
each numbered group of columns corresponds to the method used to assign type
membership. The first column allows men and women to have different rankings
of firms, and the second column splits candidates between above- and below-median
experience. The last column leverages all the observables we access for the candidates
to define latent preference groupings.32 As benchmark, a model that assigned random
numbers for each Aqj would in expectation yield a GoF statistic of 0.5. In contrast,
as reported in the first row of Table 1, the one-type model increases GoF over that
baseline to 0.677. This relatively large increase in explanatory power compared to
the benchmark indicates significant vertical differentiation of firms.

32. In order to compare the results under separate groupings, we maintain the same sample of
bids/comparisons in each column. However, not every firm in the overall connected set is accepted
and rejected at least once by a candidate of each gender/experience level. When splitting by gender
or experience categories, we therefore assign weights αiq of 0.95 to each candidate’s own-group and
0.05 to the other group, which maintains overlap.
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Column 1 of Table 1 assigns women and men to distinct preference types. Doing
so yields no additional explanatory power over the revealed preferences in the data
relative to a one-type model: the GoF statistic increases imperceptibly (from 0.677
to 0.685), and the formal LR test fails to reject the null that the two-type and one-
type models are equivalent (p = 0.999). This finding mirrors that of Sorkin (2017),
who also finds that estimated average preference orderings of men and women are
extremely similar. Splitting by experience in Column 2 does only marginally better:
while the LR test can reject the null that the two-type model is equivalent to the one-
type model (p = 0.015), the GoF statistic increases by just 1pp. However, using the
full set of observables to define types (Column 3) performs markedly better than the
gender- and experience-split models. With two types, the GoF statistic is 0.744, an
almost 6pp larger increase than for the gender or experience splits. Sequential LR tests
between the one- and two-type models and two- and three-type models both reject the
null that the more complex models are equivalent to the simpler models (p ≤ 0.001).
However, we are unable to reject the null hypothesis that the four-type alternative is
equivalent to the three-type model (p = 0.987). We therefore adopt the three-type
version as our baseline. Panel (a) of Figure A.1 provides additional evidence of the
quality of the fit of the preferred 3-type model by plotting the relationship between
the model-implied probabilities that a given bid will be accepted against the empirical
acceptance probability. The figure documents that the model-implied probabilities
are extremely close to the actual acceptance probabilities (in expectation).

Plugging in the estimated rankings into our second-step GMM procedure yields
the following labor supply elasticity parameter estimates:

uq(bij, ai) = log
(
b/ai

)
×



3.60
(0.21)

+ 1.50
(0.25)

· 1[b < ai] if Qi = 1,

3.95
(0.19)

+ 1.62
(0.23)

· 1[b < ai] if Qi = 2,

4.19
(0.18)

+ 1.53
(0.22)

· 1[b < ai] if Qi = 3.

Our estimates are similar to others in the literature: Berger, Herkenhoff, and Mongey
(2022) report an estimate of 3.74, while Azar et al. (2020) report an estimate of 5.8.33

In order to validate the estimated rankings, we return to the reasons candidates
provide when rejecting an interview request, described in Section 2.3. We now divide
the list of reasons candidates choose from into two categories: personal reasons that

33. Note that, in contrast with other studies, our model allows for kinked labor supply and so we
estimate elasticities of 5.1-5.7 below the kink, i.e. when b < ai, and 3.6-4.2 above the kink.
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should correspond to a low draw of ξij and job-related reasons that should correspond
to a low value of Aqj. If the model provides a good fit to the data, then we should
find that candidates are more likely to reject highly-ranked firms for personal reasons
than job-related reasons relative to lower-ranked firms. To test this hypothesis, we
compute the probability that a firm was rejected for a job-related reason and regress
these probabilities on firms’ ordinal ranks under the one-type model (higher ranks
are better). We estimate a strongly significant negative relationship, such that a
one-percentile increase in estimated firm rank is associated with a -0.090 (0.014)
decrease in the probability of rejection for job-related reasons. Figure A.2 plots
this relationship. Finally, Figure A.3 leverages our access to firms’ listed benefits
on their Hired.com feature page34 to depict the relationship between listed benefits
and estimated rankings for a sub-sample of firms for which these benefits could be
collected. Panel (a) reports the distribution of the number of listed benefits in this
sub-sample. Panel (b) depicts the strong positive correlation between the number of
listed benefits and a firm’s estimated rank.

6.2 Significant Vertical and Horizontal Differentiation of Firms

Figure 3 illustrates the scale of vertical and horizontal differentiation of firms implied
by our preferred model estimates. To understand the importance of amenities relative
to pay, we compute a willingness-to-accept statistic (WTA) for every firm. The
statistic is equal to the fraction of a candidate’s ask that the model implies a firm must
offer to make that candidate indifferent between accepting or rejecting an interview
request, on average. We compute WTAqj as the number that solves:

(
θ̂q0 + θ̂q1 × 1[WTAqj < 1]

)
× log(WTAqj) + Âqj − Âq0 = 0.

where Aq0 is the q-th component of the vector of mean outside option values. Panel
(a) of Figure 3 plots the distribution of the mean WTA at each firm, averaging over
the population probabilities of each type:

WTAj =
3∑
q=1

αq ×WTAqj.

The average mean WTA is 0.985, indicating that candidates are willing to accept
1.5% less than their ask at the average firm. The standard deviation (S.D.) of mean

34. Firms have profiles on Hired.com that candidates can consult and that contain a description of
the firm’s mission as well as the benefits they offer (e.g. health insurance, vacations, remote work)
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WTA across firms is 0.123 (or 12.3% of the ask), which indicates a large range of vari-
ability in the amenity values candidates attach to firms. Indeed, there is a nontrivial
number of firms for which the average candidate would be willing to accept less than
80% of their ask, and an even larger number of firms for which candidates demand
over 120% of their ask. Panel (b) of Figure 3 illustrates the systematic component of
horizontal differentiation. Here, we plot the within-firm standard-deviation of WTAqj

across preference types. The mean within-firm S.D. of WTA is 0.140, suggesting that
the scale of systematic horizontal differentiation is comparable to that of vertical dif-
ferentiation. The implication of these estimates is that there is large scope for firms
to exercise market power in the ways we have specified: substantial horizontal dif-
ferentiation implies that firms stand to gain significantly from accurately predicting
which candidates are in which preference group, while substantial vertical differenti-
ation implies that high-ranked firms, if acting strategically, can afford to mark down
wages significantly. Given the significant scope for firms to set wages in response to
preference heterogeneity, assessing firms’ true wage-setting conduct is crucial. Section
6.3 implements our formal test of conduct. Finally, in Panel (c) of Figure 3 we plot
estimated firm pay premia–firm fixed effects from a regression of log bids on candidate
characteristics interacted with market conditions–against mean firm amenity values.
Our results suggest that augmenting differentials prevail: firms that pay well are also
firms with better amenities, such that between-firm dispersion in amenities amplifies
inequality. On average, a 1-S.D. increase in amenity values is associated with a 0.325
(0.030) S.D. increase in the firm pay premium.

What firm characteristics are associated with higher amenity values? To partially
answer this question, we run regressions of (standardized) estimates of Aqj on firm
covariates zj. We report these estimates in Panel A of Table B.2.35 Even with the
relatively coarse covariates available, some clear patterns are evident. In particular,
our results suggests a loose classification of groups as “baseline” (group 2), “risk-
averse” (group 3), and “risk-loving” (group 1). Relative to baseline, members of
group 3 are more interested in working at larger, established firms for which there
may be less employment risk, while members of group 1 are more interested in working
at the smallest firms (e.g. startups) that may be more risky bets.

How are worker characteristics related to type membership? To assess this, we
compute average posterior type probabilities for candidates with various observable

35. The covariates available to us represent only a small fraction of the full set of relevant char-
acteristics candidates may consider when they choose among job offers. Importantly, the (“all-in”)
amenity values we estimate do not depend upon exhaustive knowledge of what candidates value.
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Figure 3: Firm Differentiation

(a) Vertical Differentiation (b) Horizontal Differentiation

(c) Correlation of Amenity Values and Firm
Pay Premia

Note: This figure illustrates the scale of vertical and horizontal differentiation of firms implied
by our preferred model estimates. Willingness to Accept (WTA) is the fraction of a candidate’s
ask salary that the model implies a firm must offer to make her indifferent between accepting or
rejecting an interview request, on average. Panel (a) plots the distribution of the mean WTA at
each firm, averaging over the population probabilities of each type. The vertical grey dashed line
indicates a WTA of 1, or Bid=Ask. Panel (b) illustrates the systematic component of horizontal
differentiation, plotting the distribution of within-firm, cross-type standard-deviations of WTA.
Panel (c) plots standardized firm pay premia (firm fixed effects from a regression of log bids on
candidate characteristics and market conditions) against standardized firm amenity values.

characteristics (our discussion of the EM algorithm in Appendix D covers the con-
struction of these probabilities). Panel B of Table B.2 reports these average posterior
type probabilities. We find that women are 13.3pp more likely to belong to the risk-
averse group and 9.4pp less likely to be in the risk-loving group than men. Candidates
with above-median experience are 16.3pp more likely to be in the risk-loving group
and 7.4pp less likely to be in the risk-averse group than those with below-median
experience. While there is significant residual variation in preferences conditional on

35



covariates, our estimates suggest that covariates are indeed predictive of preferences.

6.3 Testing Between Models of Conduct

We next describe the results of implementing our estimation and testing framework
for labor demand. As a preliminary matter, we depict an illustrative example of the
time-series variation in sub-market on-platform potential tightness that we use as our
excluded instrument tij in Panel (a) of Figure 4. This figure plots the value of tij in the
sub-market for software engineers with 2-4 years of prior experience over three years
of our sample period, and is illustrative of the high-frequency idiosyncratic variation
in potential tightness captured by the instrument. Panel (b) of Figure 4 plots the
“first stage” relationship between the model-implied inclusive values (Λi and Λ−ji )
and tij, conditional on firm and candidate covariates and two-week period dummies.
Intuitively, the fewer candidates there are relative to firms (low tij), the more offers
those candidates should receive, and the larger the inclusive values associated with
their offer sets should be. This intuition is borne out in Panel (b) of Figure 4: both
full- and leave-one-out inclusive values are strongly negatively related to tij. Appendix
G.3 reports the weak instrument diagnostics of Duarte et al. (2023), which confirm
that our procedure has power to distinguish between alternative models of conduct.

Columns (1)-(4) of Table 2 report the results of implementing our pairwise testing
procedure for the five models we estimated, using the moment-based versions of the
Vuong test. Positive values imply the row model is preferred to the column model.
Under the null of model equivalence, the test statistics are asymptotically normal
with mean zero and unit variance. The test statistics we report suggest that we
can resoundingly reject the null hypothesis of model equivalence in most cases. The
“Perfect Competition” model unambiguously performs the worst of all models we
tested. The extremely poor performance of this model, which cannot rationalize a
mass point of bids exactly equal to ask, is unsurprising and perhaps best viewed
as a validation of our testing procedure. Among the remaining alternatives, the
two monopsonistic competition models outperform the two oligopsony models, with
the not-predictive monopsonostic competition alternative performing best. Following
Duarte et al. (2023), we construct model confidence set (MCS) p-values using the
procedure of Hansen, Lunde, and Nason (2011) and report them in Column (5) of
Table 2. The MCS is akin to a confidence interval over models that controls for
the familywise error rate: it is constructed to contain the model(s) of best fit with
probability 1 − α. If a model has an MCS p-value below α, it is rejected from the
model confidence set. The MCS p-values confirm our pairwise testing results: our
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Figure 4: Vuong Test

(a) Instrument Time-Series Variation

(b) First Stage (c) Visualizing the Vuong Test

Note: Panel (a) depicts an example of the time-series variation in the excluded instrument tij for the
sub-market of software engineers with 2-4 years of experience over three years of our sample period.
Panel (b) is a binned scatterplot depicting the “first stage” relationship between model-implied
inclusive values Λi and Λ−ji and tij , conditional zj , xi and two-week period dummies. Panel (c)
plots the relationship between generalized residuals and the tij for the non-predictive monopsonistic
competition and oligopsony models. Under proper specification, the correlation of the generalized
residuals and the excluded instrument should be zero (the dashed line). The larger the deviation
from zero, the greater the degree of misspecification.

estimated MCS contains only the not-predictive monopsonoistic competition model.36

We visualize the results of the testing procedure in Panel (c) of Figure 4, which
plots generalized residuals for two alternative models against the excluded instrument.
Under proper specification, the generalized residuals should not be correlated with
the instrument: the further a model’s generalized residuals are from the x-axis, the

36. To visually assess model fit, Panel (b) of Figure A.1 plots the relationship between observed
bids and the systematic component of valuations γj(xi) in our preferred model and, encouragingly,
find that the two are strongly and positively correlated.
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Table 2: Non-Nested Model Comparison Tests (Rivers and Vuong 2002)

(1) (2) (3) (4) (5)

Model Monopsonistic Comp. Oligopsony MCS p-Value
Not Predictive Type Predictive Not Predictive Type Predictive

Perfect Competition -64.94 -64.36 -55.89 -51.35 0.00
Monopsonistic, Not Predictive – 4.00 4.00 10.57 1.00
Monopsonistic, Type Predictive – 2.88 9.89 0.00
Oligopsony, Not Predictive – 16.81 0.01
Oligopsony, Type Predictive – 0.00

Note: Columns 1-4 of this table report test statistics from the Rivers and Vuong (2002) non-nested model comparison procedure. Positive
values imply the row model is preferred to the column model. Under the null of model equivalence, the test statistics are asymptotically
normal with mean zero and unit variance. Column 5 reports model confidence set p-values.

greater the degree of misspecification. The generalized residuals for the monopson-
sitic competition alternative are closely aligned with the x-axis, while the generalized
residuals for the oligopsony alternative are strongly negatively related to tightness.

Our tests therefore suggest that models of firm behavior in which firms both ignore
strategic interactions in wage setting and do not tailor wage offers to candidates on
the basis of predictable preference variation are closer approximations to firms’ true
bidding behavior on the platform than are models in which firms act strategically and
tailor offers.37 These testing results are robust to both our choice of instrument and
goodness-of-fit criterion. In Appendix G.1, we report additional testing results using
an alternate set of instruments: the “Differentiation IV” formulation of standard
BLP instruments proposed by Gandhi and Houde (2023). Appendix G.2 reports
testing results using the original Vuong (1989) likelihood ratio test. Both alternate
testing procedures yield qualitatively identical model comparisons. In the following
analysis, we therefore adopt the not-predictive monopsonostic competition model as
our preferred model of conduct.

6.4 Comparing Demand Estimates

Our preferred model of conduct is the simplest of the four imperfect competition
alternatives we specified. Under that model of conduct, there is little to no room for
variation in markdowns between firms or differences in markdowns across candidates
within firms. How much do the conclusions of the more complicated models of wage
setting differ from those of the preferred model? To answer this question, we report
comparisons between pairs of models of increasing complexity, adding one conduct

37. Recall that bids are highly predictive of final offers (bivariate R2 = 0.75). This suggests that
there is little additional tailoring of wages after the initial bid.
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Figure 5: Contrasting labor market implications across models

(a) Predicted Markdowns (b) Between-firm productivity variation

(c) Between-firm markdown variation (d) Within-firm markdown variation

Note: Panel (a) plots the distribution of model-implied markdowns under the (not type-predictive)
monopsonistic competition and oligopsony models. Panels (b) and (c) consider between-firm vari-
ation. Panel (b) plots firm components of model-implied productivity for the preferred model and
the not-predictive oligopsony model against the standardized mean firm amenity value. Panel (c)
plots firm components of model-implied markdowns against mean firm amenity values, for the pre-
ferred model and the not-predictive oligopsony model. Panel (d) plots de-meaned model-implied
markdowns on the predictable component of horizontal preference variation, for the not-predictive
and predictive oligopsony models.

assumption at a time. First, we compare the preferred model to the oligopsony model,
maintaining the assumption that firms are not type-predictive. Then, we compare
the not-predictive oligopsony model to its type-predictive version.

Assuming firms are not type predictive, Panel (a) of Figure 5 plots the distribu-
tions of predicted markdowns in dollars under monopsonistic competition and oligop-
sony. We compute markdowns as the difference between the model-implied firm
valuation and the observed bid: εmij − bij.38 The two alternatives predict markedly

38. In cases where the implied valuation is not point identified (the bid is equal to ask), we take
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different markdown distributions. First, under the preferred, monopsonistic model,
the average predicted markdown is $31,640 (or 19.5% of productivity), with a stan-
dard deviation of $6,976. In contrast, the oligopsony model predicts uniformly larger
markdowns: the mean model-implied markdown under that assumption is $44,491
(or 26.6% of productivity, roughly 36% larger than under monopsonistic competi-
tion). Second, the distribution of markdowns under oligopsony is significantly more
variable, with a standard deviation of $13,265. Third, under monopsonistic competi-
tion, the distribution of markdowns is relatively symmetric: its mean and median are
separated by less than $50, and its skewness is just 0.35. In contrast, the distribution
of markdowns under oligopsony is highly skewed: its mean is $2,405 larger than its
median, and its skewness is 1.8. The two sets of markdowns are positively correlated
but the correlation is far from one, at 0.25. The large contrasts highlighted by Panel
(a) of Figure 5 illustrate the importance of understanding which form of conduct
best describes firm behavior: different assumptions about the presence of strategic
interactions lead to strikingly different conclusions about the size of markdowns.

Monopsonistic competition and oligopsony yield diverging implications not only
for the marginal distribution of markdowns, but also for the joint distribution of
markdowns and productivity across firms. Panel (b) of Figure 5 plots firm components
of model-implied productivity against standardized mean firm amenity values. In
both models, the relationship between amenities and productivity is positive: firms
with relatively better amenities are more productive. But the slope of the relationship
is over three times larger under oligopsony than under monopsonistic competition.
This leads to large differences in implied productivity dispersion across firms: in the
preferred model, firms with the best amenities (+2σ) are 3.4% more productive than
firms with the worst amenities (−2σ). Under oligopsony, that difference is 10.6%.

What drives the large differences between the two models? Oligopsonistic firms
internalize a firm-specific labor supply elasticities that depend upon their amenities,
such that firms with better amenities should mark wages down more. Monopsonisti-
cally competitive firms internalize upward-sloping firm-specific labor supply curves,
the elasticities of which do not depend upon their amenities. Panel (c) of Figure
5 illustrates this empirically by reporting binned scatterplots of de-meaned model-
implied markdowns against mean firm amenity values for the two models. Under
oligopsony, firms with the best amenities mark down wages by 7.4pp more than firms
with the worst amenities. Under monopsonistic competition, there is essentially no
room for different firms to set different markdowns, and so the relationship is flat.

the midpoint of the model-implied range of valuations: (εm+
ij + εm−ij )/2− bij .
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Next, we add another layer of complexity to wage setting: allowing firms to be
type-predictive. Panel (d) of Figure 5 reports binned scatterplots of de-meaned model-
implied markdowns on the predictable component of horizontal preference variation
for the not-predictive and predictive oligopsony models. While the not-predictive
model allows for systematic variation in markdowns between firms, it does not allow
for systematic variation in markdowns within firms across candidates. This yields a
flat relationship between markdowns and predictable horizontal preference variation.
In contrast, the type-predictive alternative allows firms to optimally use the infor-
mation about preferences revealed by observable candidate characteristics to mark
down wages. Intuitively, the candidates who value a given firm’s amenities relatively
more will be offered lower wages. Our estimates imply that the wage offers a type-
predictive firm makes to the workers who value its amenities the most are marked
down 3.0pp more than the offers it makes to workers who value them the least.

The models also yield differing conclusions about labor demand and the sources
of gender gaps. Roussille (2024) documents a substantial gender gap in ask salaries.
Under the preferred model, the average elasticity of εij with respect to the ask is 0.91,
with small and statistically insignificant differences in firms’ valuations of men and
women (-0.44% (0.29%)). Under the oligopsony alternative, the average elasticity of
εij with respect to the ask is 0.80, with a large and significant gender gap in firms’
valuations (-0.76% (0.27%)). Under the preferred model, 7.4% of the gender gap
in εij is accounted for by differences in firms’ perceptions of productivity between
men and women (conditional on ask), while differences in asks account for 92.6%.
Under the oligopsony alternative, that share doubles to 14.4%. Appendix H presents
further comparisons of estimated labor demand parameters. Among other things, we
document that our labor demand estimates feature minimal complementary between
worker and firm covariates, suggesting that additive models of worker and firm effects
(Abowd, Kramarz, and Margolis 1999) provide good approximations to log wages.

In a final exercise, we briefly consider implications of our findings for gender gaps
in welfare. There exists a large gender gap in the number and average monetary value
of bids received by men and women, which maps into a large average gap in welfare
as measured by the inclusive values of candidates’ interview offer sets. These gaps
are primarily driven by gender differences in the monetary value of bids received,
but a nontrivial share of the gap can be attributed to the fact that women receive
bids from firms with less attractive amenities than men. We conduct counterfactual
simulations to quantify the impact of imperfect competition on welfare and gender
gaps. Relative to a “price taking” baseline, we find that firms make significantly
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fewer offers with lower average wages under the preferred model. Relative to the
preferred model, however, the average value of bids, the total number of bids, and
welfare are significantly lower in simulated equilibria with strategic interactions. Al-
though a significant gender gap exists under price taking, relative gender gaps are
larger under imperfect competition and increase further when firms are assumed to be
type-predictive. Finally, we find that blinding employers to the gender of candidates
generates only a modest reduction in gender gaps under the preferred model of con-
duct, but the size and direction of the predicted effect of blinding varies meaningfully
across assumed conduct scenarios. Appendix I presents these decompositions and
counterfactual exercises in greater detail

7 Conclusion

This paper provides direct evidence about the nature of firms’ wage-setting behavior
by developing a testing procedure to adjudicate between many non-nested models
of conduct in the labor market. In particular, we focus on two sets of alternatives
relevant to ongoing debates in the labor literature: first, whether firms compete
strategically (Berger, Herkenhoff, and Mongey 2022; Jarosch, Nimczik, and Sorkin
2023), and second, whether firms tailor wage offers to workers’ outside options (Postel-
Vinay and Robin 2002; Jäger et al. 2023; Flinn and Mullins 2021). Applying our
testing procedure, we find evidence against strategic interactions in wage setting as
well as against the tailoring of offers to workers of different types. Importantly,
we find that incorrect conduct assumptions can lead to substantial biases: in our
preferred model, wages are marked down by 19.5% on average, and markdowns do
not vary systematically between firms or across workers at the same firm. Adopting
alternate assumptions in which firms interact strategically in wage setting leads to
average implied markdowns of 26.6% which vary substantially between firms. Further
assuming that firms internalize predictable horizontal variation in preferences implies
significant additional markdown heterogeneity across workers. Our results suggest
that both of these patterns are inconsistent with the observed behavior of firms.

Granular online search data, such as job-seekers’ clicks, application behavior, and
employment outcomes, are becoming increasingly available to researchers. Recent
wage transparency laws also make the salary negotiation process more explicit on
online platforms. This paper provides a blueprint for how to leverage these novel
data to test models of firm wage-setting conduct in the labor market.
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For Online Publication: Appendix

A Additional Figures

Figure A.1: Assessing Model Fit

(a) Model Fit: Labor Supply (b) Model Fit: Labor demand

Note: Panel (a) plots the relationship between the empirical acceptance probability of a bid and
the model-implied probabilities that the bid will be accepted. Panel (b) plots the relationship
between observed bids and the systematic component of valuations exp(z′jΓxi) in the preferred
model, controlling for the ask salary. Unconditionally, the slope of the relationship between bids
and the observed component of valuations is 0.83.

Figure A.2: Interview Rejection Reasons as a Function of Firm Rankings

Note: This figure plots the probability that a firm was rejected for a non-compensation-related reason
as a function of firms’ ordinal rankings (where higher ranks are better). For a sub-sample (57%)
of rejected bids, candidates opted to provide a justification. They can choose from justifications
such as “insufficient compensation” or “company culture”. The latter is the justification we label as
“bad company fit”. We plot the probability of rejection due to bad company fit against estimated
rankings from the single-type model.
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Figure A.3: Benefits Listed by Firms

(a) Distribution of number of listed Benefits
(b) Relationship between listed benefits

and rank

Note: This figure displays the distribution of benefits listed by firms in the subset of ranked firms for
which information on benefits is available. Panel (a) plots the density of the number of listed benefits
per firm. The bar “20+” includes numbers of listed benefits greater than 20 up to a maximum of
53. The mean number of benefits is 10.71 (S.D. 9.45), while the median is 7. Panel (b) illustrates
the relationship between firm ranking and the number of listed benefits. On average an additional
benefit increases the firm’s ranking by 1 centile.
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Table B.1: Descriptive Statistics

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Candidates Panel B: Companies

All Connected Set All Connected Set
Yes No Diff. Yes No Diff.

Number of candidates 44,321 14,344 29,977 Number of companies 2,121 1,649 472
Mean no. bids received 4.3 7.1 2.4 4.7 Mean no. jobs/company 8.0 9.8 1.5 8.3
Mean share of bids accepted 62.4 58.1 68.3 -10.2 Mean no. bids per job 15.8 16.4 3.8 12.6
Share female 18.9 18.9 18.8 0.1 Mean no. final offers/job 0.3 0.3 0.1 0.2
Mean ask salary $139k $148k $134k $14k Mean bid salary $137k $140 $126k $13k
Education Age (N=1,101)
Share with a bachelor’s degree 98.9 99.2 98.8 0.4 Share 0-5 years 38.2 37.9 39.9 -2.0
Share with a master’s degree 51.9 50.2 52.7 -2.5 Share 6-10 years 46.5 47.0 44.1 2.9
Share with a CS degree 63.1 67.4 61.0 6.4 Share 11-15 years 10.5 11.3 6.9 4.4
Share with an IvyPlus degree 15.4 18.3 13.9 4.4 Share 16+ years 4.7 3.8 9.0 -5.2

Preferences Size (N=1,160)
Share looking for full time job 98.4 98.7 98.2 0.5 Share 1-15 employees 19.1 16.4 31.7 -15.3
Share looking for a job in SF 69.9 84.5 62.8 21.7 Share 16-50 employees 29.1 29.7 25.9 3.8
Share in need of visa sponsorship 21.4 20.6 21.8 -1.2 Share 51-500 employees 41.0 42.8 32.7 10.1

Work History Share 500+ employees 10.8 11.0 9.8 1.2
Average years of total experience 11.4 11.3 11.4 -0.1 Industry (N=1,160)
Share that worked at a FAANG 10.8 12.8 9.9 2.9 Share in tech 36.5 37.2 33.2 4.0
Share leading a team 86.5 87.3 86.1 1.2 Share in finance 14.7 15.9 9.3 6.6
Share employed 74.9 75.5 74.6 0.9 Share in health 9.5 9.0 11.7 -2.7
Median days unemployed (if > 0) 169 170 169 1 Share in other industries 39.3 37.9 45.9 -8.0

Occupation
Share of software engineers 68.7 76.3 65.1 11.2
Share of web designers 6.4 6.1 6.6 -0.5
Share of product managers 7.3 5.7 8.2 -2.5

Note: This table reports summary statistics for candidates and firms in our primary analysis sample and for the connected set used to estimate firm amenity
values. Panel A reports summary statistics for candidates, while Panel B reports summary statistics for firms. Columns (1) and (5) report summary statistics
for the full sample. Columns (2) and (6) report summary statistics for workers and firms in the connected set. Columns (3) and (7) report summary statistics
for workers and firms not in the connected set. Columns (4) and (8) report differences between (2) & (3) and (6) & (7), respectively.
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Table B.2: Correlates of Amenity Values and Type Probabilities

(1) (2) (3) (4)

Panel A: Correlates of Firm Amenity Values

One-Type Model Three-Type Model

Âj Â1j Â2j Â3j

Year Founded 0.00153 0.000951 0.00846 -0.00805∗
(0.00394) (0.00165) (0.00436) (0.00315)

15-50 Employees 0.161∗ -0.237∗ 0.0743 0.153∗
(0.0742) (0.104) (0.0904) (0.0763)

50-500 Employees 0.474∗∗∗ -0.320∗∗ 0.218∗ 0.406∗∗∗
(0.0743) (0.100) (0.0875) (0.0738)

500+ Employees 1.144∗∗∗ -0.373∗∗∗ 0.481∗∗∗ 0.743∗∗∗
(0.118) (0.103) (0.103) (0.0819)

Finance -0.0610 -0.0678 0.0121 -0.0490
(0.0902) (0.0433) (0.0606) (0.0509)

Tech -0.188∗∗ -0.0342 -0.0716 -0.0135
(0.0635) (0.0456) (0.0500) (0.0417)

Health -0.102 0.0133 -0.0395 0.0305
(0.0953) (0.0637) (0.0682) (0.0892)

adj. R2 0.180 0.020 0.033 0.126
N 913 913 913 913

Panel B: Posterior Type Probabilities by Candidate Characteristics

% of Sample αi1 αi2 αi3

All Candidates 100.0 0.290 0.315 0.395
Male 81.5 0.307 0.323 0.370
Female 18.5 0.213 0.284 0.503
Low Experience 50.0 0.208 0.360 0.432
High Experience 50.0 0.371 0.271 0.358
College or Less 61.8 0.300 0.378 0.323
Grad. Degree 38.2 0.274 0.215 0.511

Note: Panel A reports regressions of standardized estimates of firm amenity values
by type, Âqj , on firm characteristics zj and a constant. The omitted category is 0-15
employees. Robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p <
0.001. Panel B reports average posterior type probabilities conditional on a number
of observable characteristics.
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C Illustration of conceptual framework

The following simple model, adapted from Bhaskar, Manning, and To (2002), can be
used to illustrate the logic of our conduct testing procedure. In particular, the model
illustrates the role of preference heterogeneity, the implications of conduct assump-
tions, and the basic logic of our estimation and testing framework. The basic message
is that different combinations of assumptions on competition and wage-setting flexi-
bility deliver different wage equations, which can then be used to infer conduct.

In this model, there are two firms j = −1,+1. These firms are located on either
end of a mile-long road, and have productivity MRPLj = ARPLj = γj. Workers’
homes lie along the road with location given be ξ, which is private information.
These locations are uniformly distributed: ξ ∼ Unif[0, 1]. The road has two sides (left
and right) for a given location ξ. Workers’ homes are on either on the left or right
side, recorded by v, which is public information observable to firms: v ⊥⊥ ξ, v =
{−1,+1} w.p. 1/2. Firms post wages (which may vary by v). Worker’s preferences
over firms depend upon the wage offered by each firm and commuting costs. The
latter are a function of the workers’ location along the road as well as whether the
worker will have to cross the road to get to work. Worker utilities are given by:

uv−1(ξ) = wv−1 − β
(
ξ + αv

)
; uv+1(ξ) = wv+1 − β

(
1− (ξ + αv)

)
.

Under these assumptions, type-v’s labor supply to firm j is:

Svj (wvj ;wv−j) = 1
2 +

wvj − wv−j
2β + α v j.

Labor demand is determined by profit maximization:

πj(w) = 1
2

+1∑
v=−1

(γj − wv)× Svj (wv; ŵv−j),

where the random variable ŵv−j encodes j’s knowledge of the competitive environ-
ment. Wages are determined by firms’ first-order conditions and a market clearing
constraint:

wvj = 1
2(ŵv−j + γj − β)− αβ v j, Svj (wvj ; ŵv−j) + Sv−j(wv−j; ŵvj ) = 1.

We next define conduct as assumptions about the content of ŵv−j and firms’ use
of v in wage setting. In the table below we map each conduct assumption with its
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corresponding, distinct, equilibrium wage (and hence wage markdown):

Conduct use v? Firm’s ŵv−j Equilibrium Wage(s) wvj

Perfect Comp. No — γj

Monopsonistic Not TP No w 3
4γj + 1

4γ−j − β

Monopsonistic TP Yes wv 3
4γj + 1

4γ−j − β
(
1 + αv j

)
Oligopsony Not TP No w−j

2
3γj + 1

3γ−j − β

Oligopsony TP Yes wv−j
2
3γj + 1

3γ−j − β
(
1 + 2

3αv j
)

Note: TP stands for Type-Predictive

How can we adjudicate between these models? Each model, which we index by
m, yields a wage equation of the form:

wvj = cmown · γj + cmother · γ−j − cvmj .

where cmown and cmother are coefficients governing the pass-through of own-firm and
other-firm productivity into wages, and where cvmj is a model-specific intercept. A
traditional approach in labor economics is to estimate the vector of these coefficientsĉ.
To do so, one might first construct proxies for firm productivity γj and identify
instruments that shift γj (and/or competitive environment). Then, one would regress
wvj on γj, γ−j, and concentration measures. To conduct inference, we might perform
a simple Wald test on the parameter cj, for instance: H0 : cj ≥ 1, Ha : cj < 1.
Our approach (which follows the New Empirical Industrial Organization tradition)
is to estimate γ̂, rather than ĉ. A particular conduct assumption m, in combination
with labor supply parameters estimated in a prior step, determines the coefficients
cm. Rather than searching for instruments for productivity, find instruments for
markdowns that are excluded from productivity. Then, regress wvj + cvmj on cmown and
cmother to recover γ̂mj ; for example, when firms do not use v in wage setting, we have:

γ̂m−1

γ̂m+1

 =
 cmown cmother

cmother cmown

−1 w−1 + cm−1

w+1 + cm+1


In order to adjudicate between different forms of conduct, we use the Vuong (1989)
and Rivers and Vuong (2002) tests, which compare lack of fit between alternatives.
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D EM algorithm details

Our strategy relies on the well known fact that the maximum of independent EV1

random variables is also distributed EV1: if Fξ(x) = exp(− exp(−x)) is the EV1

CDF, then Pr
(
maxk∈B0

i
log(ρqk) + ξik < v

)
= Fξ

(
v − log

(∑
k∈B0

i
ρqk
))
. Using this

observation and a simple change of variables argument, we can re-write the probability
of the partial ordering B1

i � B0
i , conditional on preference parameters ρq, as:

P
(
B1
i � B0

i | ρq
)

= Pr
(

min
j∈B1

i

log(ρqj) + ξij > max
k∈B0

i

log(ρqk) + ξik | ρq
)

=
∫ ∞
−∞

∏
j∈B1

i

(1− Fξ (v − log(ρqj)))× dFξ
(
v − log

(∑
k∈B0

i
ρqk
))

=
∫ ∞
−∞

∏
j∈B1

i

(
1− Fξ

(
v − log

(∑
k∈B0

i
ρqk
))ρqj/

∑
k∈B0

i
ρqk
)
× dFξ

(
v − log

(∑
k∈B0

i
ρqk
))

=
∫ 1

0

∏
j∈B1

i

(
1− uρqj/

∑
k∈B0

i
ρqk

)
du =

∫ 1

0

[∏
j∈B1

i
(1− zρqj ) · ρRiq · zρRiq−1

]
︸ ︷︷ ︸

=fi(ρq ,z)

dz.

The second line uses the independence of ξij and the distribution of maxk∈B0
i

log(ρqk)+
ξik, the third line uses the fact that Fξ(x− log(a)) = Fξ(x− log(b))a/b, and the fourth
line first substitutes u = Fξ(v − log(∑k∈B0

i
ρqk)), then substitutes z = u1/ρRiq , where

ρRiq = ∑
j∈B0

i
ρqj, and ARiq = log(ρRiq). This expression, and its derivatives, can be

quickly and accurately approximated by numerical quadrature.
We estimate β and ρ via a first-order EM algorithm (replacing full maximization

in the M step with a single gradient ascent update). Applying successive minoriza-
tions yields parameter updates that monotonically increase the likelihood (Böhn-
ing and Lindsay 1988; Wu and Lange 2010). It is useful to define the shorthand:
fi(ρq) =

∫ 1
0 fi(ρq, z)dz = P

(
B1
i � B0

i | ρq
)
, f (t)

iq = fi(ρ(t)
q ), giq(β) = αq(xi | β) =

exp(x′iβq)
/∑Q

q′=1 exp(x′iβq′), g
(t)
iq = giq(β(t)). Our algorithm proceeds as follows:

• Initialization: provide an initial guess of parameter values (β(0),ρ(0)).

• E Step: at iteration t, approximate the log integrated likelihood by:

E (t)(β,ρ) =
Q∑
q=1

α
(t)
iq log

(
giq(β) · fiq(ρq)

)
, where α

(t)
iq =

g
(t)
iq · f

(t)
iq∑Q

q′=1 g
(t)
iq′ · f

(t)
iq′

.

• M Step: Find β(t+1),ρ(t+1) by computing a single gradient ascent update.

We initialize our algorithm at 50 random starting values, and report the estimate that
yields the highest likelihood. We now detail computation of gradient ascent steps.
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Define E (t)
g (β) = ∑N

i=1
∑Q
q=1 α

(t)
iq · log(giq(β)), and E (t)

fq (ρq) = ∑N
i=1 α

(t)
iq · log(fi(ρq)),

such that: E (t)(β,ρ) = E (t)
g (β) +∑Q

q=1 E
(t)
fq (ρq). Since E (t) is separable in β and ρq, we

consider each part separately.
The first component is E (t)

g (β) = ∑N
i=1

∑Q
q=1 α

(t)
iq ·

(
x′iβq − log

(∑Q
q′=1 exp(x′iβq′)

))
.

Let α(t)
i =

[
α

(t)
i2 . . . α

(t)
iQ

]′
, g(t)

i =
[
g

(t)
i2 . . . g

(t)
iQ

]′
, and E (t)

g = E (t)
g (β(t)). Then the gradi-

ent is given by: ∇E (t)
g = ∑N

i=1

(
α

(t)
i −g

(t)
i

)
⊗xi, and the Hessian is given by: ∇2E (t)

g =
−∑N

i=1

(
diag(g(t)

i )− g(t)
i gi

(t)′
)
⊗ (xix′i). Our algorithm for β follows Böhning (1992).

For any Q− 1× 1 vector g, where the elements of g are nonnegative the sum of those
elements is less than or equal to 1, we have: diag(g)−gg′ ≤

[
IQ−1 −Q−11Q−11′Q−1

]
,

whereA ≤ B is the Loewner ordering: ifA ≤ B, thenB−A is positive semidefinite.
Define the matrixB0 = 1

2

[
IQ−1 −Q−11Q−11′Q−1

]
⊗(X ′X) , whereX = [x1 . . . xN ]′.

It is straightforward to show that ∇2E (t)
g ≥ −B0. Now, consider the second-order

Taylor approximation to E (t)
g (β) at β(t):

E (t)
g (β) ≈ E (t)

g (β(t)) + (β − β(t))′∇E (t)
g + (β − β(t))′∇2E (t)

g (β − β(t))
≥ E (t)

g (β(t)) + (β − β(t))′∇E (t)
g − (β − β(t))′B0(β − β(t)) = Ẽ (t)

g (β)

The second line is a quadratic lower bound approximation to E (t)
g (β). We set:

β(t+1) = arg max
β
Ẽ (t)
g (β) = β(t) +B−1

0 ∇E (t)
g = β(t) +B−1

0

(∑N
i=1

(
α

(t)
i − g

(t)
i

)
⊗ xi

)
.

The matrix B−1
0 = 2

[
IQ−1 + 1Q−11′Q−1

]
⊗(X ′X)−1 only needs to be computed once.

The second component is E (t)
fq (ρq) = ∑N

i=1 α
(t)
iq · log(fi(ρq)). For now, we consider

each term of the sum separately, and so we drop i and q subscripts. We have:
f(ρ) =

∫ 1
0 f(ρ, z)dz =

∫ 1
0

[∏
j∈B1 (1− zρj ) · ρ0 · zρ0−1

]
dz. It is easy to show that this

probability is invariant to positive scaling of the vector ρ: for any α > 0, f(αρ) =
f(ρ). We set α = 1/ρ(t)

R and re-write the expression for f(ρ) as:

f(ρ)
f(ρ(t)) =

∫ 1
0 f(ρ/ρ(t)

R , z)dz∫ 1
0 f(ρ(t)/ρ

(t)
R , z)dz

=
∫ 1

0

 f(ρ/ρ(t)
R , z)

f(ρ(t)/ρ
(t)
R , z)

 ·
 f(ρ(t)/ρ

(t)
R , z)∫ 1

0 f(ρ(t)/ρ
(t)
R , z

′)dz′


︸ ︷︷ ︸

=π(t)(z)

dz

Jensen’s inequality implies: log(f(ρ))− log(f(ρ(t))) ≥
∫ 1

0 log
(

f(ρ/ρ(t)
R ,z)

f(ρ(t)/ρ
(t)
R ,z)

)
· π(t)(z)dz.

Letting H(t)
π = −

∫ 1
0 log(π(t)(z))π(t)(z)dz ≥ 0, the above inequality can be rewritten

as: log(f(ρ)) ≥
∫ 1
0 log

(
f(ρ/ρ(t)

R , z)
)
· π(t)(z)dz + H(t)

π , which is an equality when
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ρ = ρ(t), and is strict otherwise. We next analyze:

log
(
f(ρ/ρ(t)

R , z)
)

= ∑
j∈B1 log

(
1− zρj/ρ

(t)
R

)
+ log

(
ρR/ρ

(t)
R

)
+ (ρR/ρ(t)

R − 1) log(z).

Note that: log
(
ρR/ρ

(t)
R

)
≥ ∑k∈B0 log

(
ρk/ρ

(t)
k

)
·
(
ρ

(t)
k /ρ

(t)
R

)
, again by Jensen’s inequal-

ity. Letting H(t)
ρ = −∑k∈B0 log

(
ρ

(t)
k /ρ

(t)
R

)
·
(
ρ

(t)
k /ρ

(t)
R

)
≥ 0, the above inequality can

be rewritten as: log(ρR) ≥ ∑
k∈B0 log (ρk) ·

(
ρ

(t)
k /ρ

(t)
R

)
+ H(t)

ρ , where the inequality is
again an equality when ρ = ρ(t), and is strict otherwise. Substituting this expression
into the inequality above and lumping constant terms into the single term H(t) gives:

log(f(ρ))−H(t) ≥
∑
j∈B1

log
(

1− zρj/ρ
(t)
R

)
+
∑
k∈B0

1
ρ

(t)
R

[
log(ρk) · ρ(t)

k + ρk ·
∫ 1

0
log(z) π(t)(z) dz

]
= f̃ (t)(ρ).

The function f̃ (t)(ρ) is separable in the parameters ρ, and so its Hessian is diagonal.
To define the partial derivatives of f̃ (t)(ρ), it will be useful to work with the following
auxiliary functions: h(z, x) = log(z) · zx

1−zx , and h2(z, x) = log2(z) · zx

(1−zx)2 , and to
define: ρ̃(t)

j = ρ
(t)
j /ρ

(t)
R . We take derivatives with respect to Aj = log(ρj):

∇j f̃
(t) = ∂f̃ (t)

∂Aj

∣∣∣∣∣∣
ρ=ρ(t)

= 1
[
j ∈ B1

] (
−ρ̃(t)

j

∫ 1

0
h(z, ρ̃(t)

j )π(t)(z)dz
)

+ 1
[
j ∈ B0

] (
ρ̃

(t)
j + ρ̃

(t)
j

∫ 1

0
log(z)π(t)(z)dz

)

∇2
jj f̃

(t) = ∂2f̃ (t)

∂A2
j

∣∣∣∣∣∣
ρ=ρ(t)

= 1
[
j ∈ B1

] (
−ρ̃(t)

j

∫ 1

0
h(z, ρ̃(t)

j )π(t)(z)dz −
(
ρ̃

(t)
j

)2 ∫ 1

0
h2(z, ρ̃(t)

j )π(t)(z)dz
)

+ 1
[
j ∈ B0

] (
ρ̃

(t)
j

∫ 1

0
log(z)π(t)(z)dz

)

We construct a lower bound surrogate Ẽ (t)
fq (ρq) for the function E (t)

fq (ρq) by setting:
Ẽ (t)
fq (ρq) = ∑N

i=1 α
(t)
iq f̃i(ρq), ∇j Ẽ (t)

fq = ∑N
i=1 α

(t)
iq ∇j f̃

(t)
i and ∇2

jj Ẽ
(t)
fq = ∑N

i=1 α
(t)
iq ∇2

jj f̃
(t)
i ,

which are again defined with respect to Aq = log(ρq). Maximizing the second-order
Taylor series approximation to Ẽ (t)

fq (ρq) yields the following Newton-Raphson step:
A(t+1)
q = A(t)

q −
(
∇2Ẽ (t)

fq

)−1 (
∇Ẽ (t)

fq

)
. Because ∇2Ẽ (t)

fq is diagonal, this step takes a
(relatively) simple form. When reintroducing iq subscripts, we have: ρ̃(t)

ijq = ρ
(t)
jq /ρ

(t)
Riq

and π
(t)
iq (z) = fi(ρ̃(t)

ijq, z)
/∫ 1

0 fi(ρ̃
(t)
ijq, z

′)dz′. It will again be helpful to define addi-

tional shorthand: [h0
iq](t) = −

∫ 1
0 log(z)π(t)

iq (z)dz, [h1
ijq](t) = −

∫ 1
0 h(z, ρ̃(t)

ijq)π
(t)
iq (z)dz,

and [h2
ijq](t) =

∫ 1
0 h

2(z, ρ̃(t)
ijq)π

(t)
iq (z)dz. The gradient ascent update for a single Aqj is:

A
(t+1)
qj = A

(t)
qj +

∑N
i=1 α

(t)
iq ρ̃

(t)
ijq

(
1 (j ∈ B1) · [h1

ijq](t) + 1 (j ∈ B0) ·
(
1− [h0

iq](t)
))

∑N
i=1 α

(t)
iq ρ̃

(t)
ijq

(
1 (j ∈ B1) ·

(
ρ̃

(t)
ijq · [h2

ijq](t) − [h1
ijq](t)

)
+ 1 (j ∈ B0) · [h0

iq](t)
) .

Because the scale of ρq (level of Aq) is not identified, we renormalize the parameter
vector at each step such that ∑J

j=1 ρqj = 1.
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E Properties of bidding strategies

Log-concavity of Gm
ij (·) implies several properties of bidding functions. A function

f is log-concave if: f(λy + (1 − λ)x) ≥ f(y)λf(x)1−λ ∀x, y ∈ R, λ ∈ [0, 1]. Log-
concavity of f implies that F =

∫ x
−∞ f(u)du and 1−F = F are also log-concave, that

f/F is monotone decreasing, and that f/F is monotone increasing. A large num-
ber of common probability distributions admit log-concave densities, including the
normal, logistic, extreme value, and Laplace distributions. Log-concave probability
distributions are commonly used in models of search (Bagnoli and Bergstrom 2005).

Under each model, we may generally write Gij(b) =
∫
G̃ij(b, λ)dH(λ), where ei-

ther G̃ij(b, λ) = exp(u(b, ai))/(exp(u(b, ai)) + exp(λ)) under oligopsony or G̃ij(b, λ) =
exp(u(b, ai) − λ) under monopsonistic competition. In the latter case, log concavity
of Gij(b) follows directly from the fact that u(b, ai) is concave (by assumption), since
Gij(b) = exp(u(b, ai)) ×

∫
exp(−λ)dH(λ). Log concavity in the former case can also

be shown via differentiation of log(Gij(b)).
Let the function G+

ij(b) (with derivative g+
ij(b)) denote the right-hand side of the

Gij(b) function, which replaces θ0 + θ1 · 1[b < ai] with θ0. We similarly let G−ij(b)
denote the left-hand side function, which replaces θ0 + θ1 · 1[b < ai] with θ0 + θ1.
Clearly, Gij(b) = 1[b ≥ ai] · G+

ij(b) + 1[b < ai] · G−ij(b). Under the assumption that
both G+

ij(b) and G−ij(b) are log-concave, we have that the functions g+
ij(b)/G+

ij(b) and
g−ij(b)/G−ij(b) are both strictly decreasing functions of b. This implies that both the
left-hand and right-hand inverse bidding functions, ε−ij(b) = b + G−ij(b)/g−ij(b) and
ε+
ij(b) = b + G+

ij(b)/g+
ij(b) are monotone increasing functions of the bid. This in turn

implies that the left- and right-hand bidding functions, which we denote by b−ij(εij) and
b+
ij(εij) are also strictly increasing functions of εij. We may also define the left- and
right-hand indirect expected profit functions as π∗sij (εij) = Gs

ij(bsij(εij))2/gsij(bsij(εij))
for s ∈ {−,+}, which are both strictly increasing functions of εij. These results
establish the monotonicity of firm strategies and payoffs in their unobserved valuations
when firms bid on either side of the kink.

A necessary condition for the firm to bid at the kink is that the derivative of the
left-hand expected profit function is positive at the ask salary and the derivative of
the right-hand profit function is negative at the ask salary:

g−ij(ai)(εij − ai)−G−ij(ai) > 0 and g+
ij(ai)(εij − ai)−G+

ij(ai) < 0.

We assume that (1) εij > ai, (else the firm would never bid at ask) and (2) both
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θ0 and θ1 are positive. Given these assumptions, we can write this condition as:
ε−ij(ai) ≤ εij ≤ ε+

ij(ai). To show that this implies a unique choice of bid (and is
therefore both necessary and sufficient for establishing bij = ai), consider the case
where the derivative of the left-hand profit function is negative at ai. This implies:

g−ij(ai)(εij − ai)−G−ij(ai) < 0 =⇒ g+
ij(ai)(εij − ai)−G+

ij(ai) < 0,

since by construction g+
ij(ai) < g−ij(ai) and G+

ij(ai) = G−ij(ai). By the same logic:

g+
ij(ai)(εij − ai)−G+

ij(ai) > 0 =⇒ g−ij(ai)(εij − ai)−G−ij(ai) > 0.

Therefore, if a firm finds it profitable to bid below (above) ask given its left-hand
(right-hand) profit function, then it also finds it profitable to bid below (above) ask
given its right-hand (left-hand) profit function. In other words, firms never face a
situation in which they can increase expected profit relative to bidding at ask by
bidding both slightly above or slightly below ask. These conditions guarantee that
the firm’s optimal choice of bid is unique, even incorporating the kink, and so we may
write the firm’s optimal bidding function as:

bij(εij) =


b−ij(εij) if ε−ij(ai) ≥ εij

ai if ε−ij(ai) ≤ εij ≤ ε+
ij(ai)

b+
ij(εij) if εij ≥ ε+

ij(ai).

We have therefore shown that the firm’s optimal bid is a strictly increasing function
of its valuation outside of the interval [ε−ij(ai), ε+

ij(ai)], and is flat within that region.
Next, we consider firms’ participation decisions. Our results imply that the firm’s

indirect expected profit function is a strictly increasing function of the εij:

π∗ij(εij) =


π∗−ij (εij) if ε−ij(ai) ≥ εij

Gij(ai)(εij − ai) if ε−ij(ai) ≤ εij ≤ ε+
ij(ai)

π∗+ij (εij) if εij ≥ ε+
ij(ai).

Since π∗ij(εij) is a strictly increasing function of the firm’s valuation, an inverse indirect
expected profit function exists and is also strictly increasing. Firms’ participation
decisions are therefore given by the equivalent conditions:

Bij = 1
[
π∗ij(εij) > cj

]
⇐⇒ Bij = 1

[
νij > π∗−1

ij (cj)− γj(xi)
]
.
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F Proof of the consistency of ĉmj

Our proof of the consistency of ĉmj for each firm j (and model m) closely follows the
proof of Lemma 1 (ii) of Donald and Paarsch (2002). For clarity, we omit j and m
indices. Let n denote the total number of bids, with n → ∞. A sufficient condition
for establishing consistency is the existence of a vector of candidate characteristics
x ∈ X (including ask salary a) occurring with positive probability such that there
is a positive probability the firm optimally bids below ask for candidates with those
characteristics: ∃x ∈ X such that Pr(a > bi > 0 ∩ xi = x) > 0. The vast majority
of firms (92%) bid below ask at least once, which suggests that this assumption is
reasonable. The vector x need not be the same for all firms. This assumption implies
that the distribution of model-implied option value upper bounds π̂i is bounded below
by c when xi = x, and that Pr(π̂i ∈ [c, c + δ] | xi = x) > 0 for arbitrary δ > 0. Let
nx denote the number of bids made to candidates with characteristics x and let ĉnx
denote the minimum implied π̂ among those bids (such that ĉn = minx′∈X ĉnx′). Our
sampling assumptions imply nx a.s.→∞. For an arbitrary ε > 0, note that Pr(|π̂i− c| >
ε | xi = x) = Pr(π̂i > c + ε | xi = x) = 1 − Fπ(c + ε | xi = x) < 1. Let
F π|x(a) = 1− Fπ(a | xi = x). We then have that

(
F π|x(c + ε)

)nx a.s.→ 0, and therefore
Pr(|ĉnx − c| > ε) = Pr(ĉnx > c + ε) = E

[(
F π|x(c + ε)

)nx
]
. Since ε is arbitrary, ĉnx

p→ c,
and since ĉnx ≥ ĉn ≥ c, ĉn p→ c. Further, supm>n |ĉm − c| = |ĉn − c| p→ 0 since ĉn is
non-increasing in n, and so ĉn a.s.→ c.
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G Additional Testing Results

G.1 BLP/Differentiation Instruments

As a supplement to our main testing specification, we also implement a version of
the Rivers and Vuong (2002) testing procedure using an alternative set of instru-
mental variables: the “differentiation instruments” proposed by Gandhi and Houde
(2023). Differentiation instruments are a version of the standard set of instruments
proposed by Berry, Levinsohn, and Pakes (1995) (BLP instruments). This standard
set contains the characteristics of all products in the market. Differentiation instru-
ments measure the relative distance between each product and the set of competing
products in the market in characteristics space, and are constructed using the same
underlying information as standard BLP instruments. Our data consistently mea-
sures a handful of firm characteristics: firm age (which we split into terciles), firm
size (as a categorical variable with four size bins), and firm industry (we focus on
three major industries–tech, finance, and health–with all remaining industries com-
bined in an “other” category). Denote these firm-level variables by zj` for each firm j

and binary outcome `. Next, denote markets (occupation-by-experience-by-two-week
period bins) by t and the set of competing firms in market t by Jt. We first compute
the total number of competing firms in the market:

zj0t =
∑
k

1[k ∈ Jt].

When product/firm characteristics are continuous, differentiation instruments can be
calculated either as the sum of the Euclidean distances between a product and all of its
rival products in characteristics space, or the total number of rival products within a
certain distance bandwidth in characteristics space (typically one standard deviation
in each characteristic dimension). Because all firm characteristics we measure have
been discretized, differentiation instruments take a simple form: the instruments for
each product characteristic are the counts of all other firms in the market that have
the same value of zj`:

zj`t =
∑

k∈Jt\j
1[zj` = zk`].

We also compute differentiation instruments for the interactions between pairs of
characteristics. For each pair of non-exclusive binary characteristics ` and m, we
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define:
zj`mt =

∑
k∈Jt\j

1[zj` = zk`]× 1[zjm = zkm].

Gandhi and Houde (2023) make additional practical suggestions for implementing
differentiation instruments. First, because there may be a large number of potential
instruments (here, combining zj0t, zj`t ∀`, and zj`mt ∀` 6= m ), they suggest picking
a subset of instruments based on the amount of available variation. In practice, we
reduce the dimensionality of the instrument set by computing the principal com-
ponents of the full set of potential instruments, and retaining the components that
explain the vast majority of the total variation of the full instrument set. Denote the
dimensionality-reduced instrument set by the vector zjt, to which we append a column
of ones. Second, because our model of preferences incorporates heterogeneity that is
correlated with candidate characteristics, they suggest including the interactions of
these instruments with those characteristics. Since we measure a large number of
candidate characteristics xi, we do not include all possible interactions. Instead, we
interact the dimensionality-reduced instrument set with α̂i, the vector of predicted
probabilities that candidate i is of each type q conditional on the full vector of i’s
observable resume characteristics. Because these probabilities sum to one, the final
version of our instrument set is constructed as:

ẑij = α̂i · zjt(i,j),

where t(i, j) is an indexing function that maps candidate-firm pairs to markets, and
· denotes the full set of column interactions. This instrument set (ẑ) is what we refer
to as “BLP/Differentiation IVs”.

Our implementation of the testing procedure using BLP/Differentiation IVs ẑij
closely follows the notation of Duarte et al. (2023). Denote the generalized residuals
from each estimated model m by ĥmij , and recall that s = |{ij : Bij = 1}| is the
sample size. We use a GMM objective function to define lack-of-fit: the population
version of this objective is Qm = g′mWgm, where gm = E[zij ·hmij ] andW = E[zijz′ij]−1.
The sample analogues of these quantities are: Qm

s = ĝ′mŴ ĝm, where ĝm = s−1ẑ′ĥm

and Ŵ = s(ẑ′ẑ)−1. For any pair of models m1 and m2, we compute the Rivers and
Vuong (2002) test statistic as:

Tm1,m2
s = Qm1

s −Qm2
s

σ̂m1,m2
s /

√
s
,
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where σ̂m1,m2
s is an estimate of the population variance of Qm1 −Qm2 . As before, this

test statistic is asymptotically normally distributed with mean zero and variance one
under the null hypothesis of model equivalence (that models m1 and m2 are equally
far from the truth). If model m1 is “asymptotically better” than model m2, Tm1,m2

s →
−∞ as s → ∞ (likewise, Tm1,m2

s → +∞ if m2 is “asymptotically better” than m1).
We construct σ̂m1,m2

s using the analytical formula provided by Duarte et al. (2023),
clustering at the company level (j) to account for cross-observation dependence in ẑij.
Table G.1 reports the results of implementing this testing procedure. The results are
qualitatively extremely similar to the results obtained using the single on-platform
potential market tightness instrument, tij and the pairwise testing procedure leads
to the same conclusion: the not-predictive monopsonostic competition alternative
performs best.

Table G.1: Non-Nested Model Comparison Tests, BLP/Differentiation Instruments

(1) (2) (3) (4) (5)

Model Monopsonistic Comp. Oligopsony MCS p-Value
Not Predictive Type Predictive Not Predictive Type Predictive

Perfect Competition -40.80 -43.28 -12.94 -8.86 0.00
Monopsonistic, Not Predictive – 5.57 7.06 8.92 1.00
Monopsonistic, Type Predictive – 6.15 7.97 0.00
Oligopsony, Not Predictive – 7.76 0.00
Oligopsony, Type Predictive – 0.00

Note: Columns 1-4 of this table report test statistics from the Rivers and Vuong (2002) non-nested model comparison proce-
dure using BLP/Differentiation Instruments. Positive values imply the row model is preferred to the column model. Under the
null of model equivalence, the test statistics are asymptotically normal with mean zero and unit variance. Column 5 reports
model confidence set p-values.

G.2 The Vuong (1989) Likelihood Ratio Test

Because we estimate models by maximum likelihood, a natural option for our test of
conduct is a straightforward application of the Vuong (1989) likelihood ratio test. The
Vuong (1989) test is a pairwise, rather than ensemble, testing procedure: rather than
explicitly identifying the “best” model among a set of alternatives, the test considers
each pair of models in turn and asks whether one of those models is closer to the
truth than the other. In the likelihood setting, the “better” of two models is the one
with greatest goodness-of-fit, as measured by the maximized log-likelihoods.39

39. The population expectation of the log-likelihood measures the distance, in terms of the
Kullback-Liebler Information Criterion (KLIC), between the model and the true data generating
process.
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Let s = |ij : Bij = 1| denote the sample size. For a pair of models m1 and m2,
denote the maximized sample log-likelihoods by Lm1

s and Lm2
s , respectively, where:

Lms = max
Ψ

∑
ij:Bij=1

log
(
Lmij (Ψ)

)
,

and Ψm denotes the arg max. The null hypothesis of our test is that m1 and m2 are
equally close to the truth, or equivalent. In this case, the population expectation of
the difference in log likelihoods is zero. There are two one-sided alternative hypothe-
ses: that m1 is closer to the truth than m2, and vice versa. When m1 is closer to
the true data-generating process, the population expectation of the likelihood ratio
E0[log(Lm1

ij (Ψm1)/Lm2
ij (Ψm2)] is greater than zero. Vuong (1989) shows that when m1

and m2 are non-nested, an appropriately-scaled version of the sample likelihood ratio
is asymptotically normal under the null that the two models are equivalent:

Zm1,m2
s = L

m1
s − Lm2

s√
s · ω̂m1,m2

s

D→ N (0, 1),

where ω̂m1,m2
s is the square root of a consistent estimate of the asymptotic variance

of the likelihood ratio, ω2
∗
m1,m2 . We set:

ω̂m1,m2
s =

1
s

∑
ij:Bij=1

log
(
Lm1
ij (Ψm1)
Lm2
ij (Ψm2)

)2
1/2

.

We construct test statistics Zm1,m2
s for every pair of models we estimate. Given a

significance level α with critical value cα, we reject the null hypothesis thatm1 andm2

are equivalent in favor of the alternative that m1 is better than m2 when Zm1,m2
s > cα,

and vice versa if Zm1,m2
s < cα. If |Zm1,m2

s | ≤ cα, the test cannot discriminate between
the two models.

How does variation in the instrument increase the power of the test? The answer
depends on the relevance of the instrument for predicting markdowns. Returning to
the simplified example above, we may write the misspecification error as:

ζmij = log
(
εmij (bij)

)
− log

(
εij(bij)

)
.

To the extent that variation in tightness drives variation in markdowns under the true
model, variation in tightness will also generate variation in ζmij if the assumed modelm
is misspecified. This implies that relatively more misspecified models will imply val-
uations that are more difficult to explain using observables than those that are closer
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to the truth. Table G.2 reports the results of implementing this testing procedure.
The results are qualitatively extremely similar to the results of the moment-based
testing procedure.

Table G.2: Non-Nested Model Comparison Tests (Vuong 1989)

(1) (2) (3) (4) (5)

Model Monopsonistic Comp. Oligopsony MCS p-Value
Not Predictive Type Predictive Not Predictive Type Predictive

Perfect Competition -193.86 -192.57 -119.48 -117.93 0.00
Monopsonistic, Not Predictive – 4.16 58.59 58.25 1.00
Monopsonistic, Type Predictive – 54.64 58.77 <0.01
Oligopsony, Not Predictive – 3.96 0.00
Oligopsony, Type Predictive – 0.00

Note: Columns 1-4 of this table test statistics from the Vuong (1989) non-nested model comparison procedure. Positive values
imply the row model is preferred to the column model. Under the null of model equivalence, the test statistics are asymptoti-
cally normal with mean zero and unit variance. Column 5 reports model confidence set p-values.

G.3 Weak Instrument Diagnostics

Duarte et al. (2023) note that while model selection tests of the kind we implement
(which compare the relative fit of a set of models) have advantages over more tradi-
tional model assessment tests (which assess the absolute fit of each model separately),
model selection procedures may suffer from severe distortions in the presence of weak
instruments. To diagnose these issues, they propose a novel weak instrument diag-
nostic based on a heteroskedasticity-robust F -statistic. When the F -statistic exceeds
a certain critical value, researchers may conclude that their instruments are strong.
Duarte et al. (2023) distinguish two cases: whether instruments are weak for size or
weak for power. Instruments are weak for size when the worst-case probability of
rejecting the null hypothesis when the null is true exceeds a given confidence level.
Instruments are weak for power when the best-case probability of rejecting the null
hypothesis when the null is indeed false falls below a given confidence level. We denote
the critical values corresponding to a worst-case size of 0.075 by cvs and the critical
value associated with a best-case power of 0.95 by cvp. While the relevant critical
values for determining instrument strength can be different for each pair of models, in
practice the critical values for each instrument set are extremely close. We therefore
report the largest of each of the two critical values across model comparisons for each
instrument set.

F -statistics and critical values for diagnosing weak instruments are reported in
table G.3 below. Both instrument sets are strong for size in all model comparisons.
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The BLP/Differentiation instruments are also strong for power across all comparisons.
The potential tightness instrument is strong for power across all comparisons except
one – the comparison between the two monopsonistic competition models. This sug-
gests that the test based on our potential tightness instrument may be overly conser-
vative for this comparison. However, the test nonetheless rejects the null hypothesis
of model equivalence. In sum, these diagnostics suggest that weak instrument issues
are not a concern for the interpretation of our testing results.

Table G.3: Weak Instrument Diagnostic F -Statistics (Duarte et al. 2023)

(1) (2) (3) (4)

Model Monopsonistic Comp. Oligopsony
Not Predictive Type Predictive Not Predictive Type Predictive

Panel A: Potential Tightness Instrument

Perfect Competition 73.89 76.11 774.16 883.20
Monopsonistic, Not Predictive – 1.93 941.44 1049.78
Monopsonistic, Type Predictive – 884.77 1074.12
Oligopsony, Not Predictive – 587.66
Oligopsony, Type Predictive –

Critical Values: cvs = 0.00, cvp = 29.8

Panel B: BLP/Differentiation Instruments

Perfect Competition 12.69 13.04 36.79 34.48
Monopsonistic, Not Predictive – 17.71 34.31 28.65
Monopsonistic, Type Predictive – 37.79 33.14
Oligopsony, Not Predictive – 29.92
Oligopsony, Type Predictive –

Critical Values: cvs = 0.00, cvp = 2.8

Note: This table reports F -statistics for diagnosing weak instruments for testing conduct and associated (ap-
proximate) critical values proposed by Duarte et al. (2023). Panel A reports diagnostics for the version of the
testing procedure with tij , potential on-platform tightness, as the single instrument used to form the exclusion
restriction. Panel B reports diagnostics for the version of the testing procedure with ẑij ,BLP/Differentiation
instruments, as the instrument set used to form exclusion restrictions. Each cell reports the F -statistic for
testing between the row and column models. Critical values for testing whether instruments are weak for ei-
ther size or power (cvs and cvp, respectively) are reported at the bottom of each panel.
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H Further model comparisons

We next consider differences in estimated labor demand parameters Γ̂ between the
preferred model and the (not-predictive) oligopsony alternative. Table H.1 reports
estimated elasticities of the systematic component of labor demand with respect to
the ask salary, along with implied semi-elasticities of the systematic component of
labor demand with respect to a selection of binary covariates. All elasticities are
evaluated at the (bid-weighted) mean values of firm characteristics. The estimated
labor demand parameters represent the impacts of ceteris paribus changes in individ-
ual determinants of productivity. Since the ask salary co-varies strongly with other
observables, we report estimates of both the semi-elasticities of each binary covariate
` both holding the ask constant (γ̂`) and adjusting for differences in the average ask
salary. Column 1 reports selected coefficients from a regression of the ask salary on
all other included candidate characteristics. Women and unemployed candidates set
lower asked salaries, while those with graduate degrees and FAANG40 experience set
higher asked salaries. Columns 2 and 3 report results for the preferred model. Column
2 reports estimates of Γ. The ask salary is a powerful determinant of productivity:
the estimated elasticity with respect to the ask salary is 0.91. The remaining semi-
elasticities in column 2 are all relatively small and statistically insignificant. Column
3 reports semi-elasticities adjusted to account for average differences in asks between
groups. Columns 4 and 5 reproduce this analysis for the oligopsony alternative. The
estimated elasticity with respect to the ask, 0.80, is significantly lower than in the
preferred model, and the conditional semi-elasticities (Column 4) are much larger in
magnitude and statistically significant in all but one case. The unconditional semi-
elasticites under oligopsony (Column 5) are very similar to their counterparts under
monopsonistic competition. In the preferred model, systematic differences in firms’
average valuations between candidates of different groups (men vs women, lower- vs
higher-educated) is in essence completely mediated by differences in the average asks
of those groups. The oligopsony alternative apportions a nontrivial portion of the
gaps in firms’ average valuations between groups to autonomous differences that are
independent of the ask (e.g. direct/taste-based discrimination).

How do our preferred estimates relate to models of additive worker and firm ef-
fects (Abowd, Kramarz, and Margolis 1999)? Our model of productivity includes both
firm-specific contributions (here captured by zj), worker-specific contributions (cap-
tured by xi), and the interactions of firm- and worker-specific covariates. Table H.2

40. Facebook, Amazon, Apple, Netflix, Google
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reports the full set of labor demand parameter estimates for the preferred model. We
find evidence that interactions of worker and firm factors are statistically meaningful
determinants of productivity. However, the interaction effects we estimate are gener-
ally small, which suggests that additive models might well-approximate productivity.
To explore this, we regress bids, predicted εij, and the predicted systematic com-
ponent of productivity exp(z′jΓ̂xi) on all candidate and firm characteristics, without
including interactions. Consistent with Card, Heining, and Kline (2013)’s informal
assessment of the log-additivity of wages using mean residuals from Abowd, Kramarz,
and Margolis (1999) regressions, we find that the main effects of worker and firm char-
acteristics separately explain the vast majority of variation in bids and productivity,
as reflected in uniformly high (adjusted) R2 values: 0.911 for bids, 0.920 for εij, and
0.967 for exp(z′jΓ̂xi). In the context of the near-constant markdowns our preferred
model implies, this further suggests that additive models of worker and firm effects
provide good approximations to log wages.

Table H.1: Determinants of Match Productivity: Elasticities

(1) (2) (3) (4) (5)
E [∆Ask] Monopsonistic Comp. Oligopsony

β̂` γ̂` +β̂` · γ̂ask γ̂` +β̂` · γ̂ask

Ask Salary – 0.9074 – 0.7961 –
(0.0027) (0.0027)

Female -0.0607 -0.0044 -0.0595 -0.0076 -0.0527
(0.0013) (0.0029) (0.0029) (0.0027) (0.0027)

Unemployed -0.0568 0.0022 -0.0494 -0.0026 -0.0430
(0.0030) (0.0063) (0.0063) (0.0044) (0.0044)

Grad School 0.0253 0.0033 0.0262 0.0113 0.0234
(0.0010) (0.0025) (0.0025) (0.0024) (0.0024)

FAANG 0.0495 -0.0024 0.0425 -0.0099 0.0370
(0.0013) (0.0033) (0.0033) (0.0044) (0.0044)

Note: This table reports estimates of the elasticity of the systematic component
of labor demand with respect to the ask salary and the semi-elasticities of that
component with respect to a subset of binary covariates. Column (1) reports coef-
ficients from a regression of all included candidate characteristics on the ask salary.
Columns (2) and (3) report results for monopsonistic competition while Columns (4)
and (5) report results for oligopsony (both models assume not-predictive conduct).
Columns (2) and (4) report elasticities conditional on the ask salary while Columns
(3) and (5) report unconditional versions. Robust standard errors are reported in
parentheses.
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Table H.2: Labor Demand Parameter Estimates Γ̂ (log(εij) = z′jΓxi + νij)

(1) (2) (3) (4) (5) (6) (7)
Constant Firm Size Firm Industry

Candidate Covariates 16-50 51-500 501+ Finance Tech Health

(1) Constant 1.9374 -0.6086 -0.5183 -0.7550 -0.1447 -0.1788 0.0174
(0.0183) (0.0213) (0.0259) (0.0389) (0.028) (0.0269) (0.0408)

(2) log(Ask) 0.8464 0.0525 0.0466 0.0669 0.0121 0.0153 -0.0021
(0.0017) (0.0017) (0.0023) (0.0034) (0.0025) (0.0023) (0.0034)

(3) Female -0.0057 0.0036 -0.0021 -0.0025 0.0040 0.0035 0.0004
(0.0024) (0.0026) (0.0024) (0.0025) (0.0015) (0.0012) (0.0021)

(4) Software Eng. 0.0268 -0.0037 -0.0127 -0.0156 0.0068 0.0054 0.0064
(0.0027) (0.0029) (0.0027) (0.0028) (0.0016) (0.0013) (0.0021)

(5) Experience 0.0001 0.0008 0.0016 0.0015 -0.0003 -0.0003 -0.0001
(0.0006) (0.0006) (0.0006) (0.0006) (0.0002) (0.0003) (0.0004)

(6) Experience Sq. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

(7) Employed 0.0001 0.0002 0.0022 0.0007 0.0000 -0.0033 0.0019
(0.0038) (0.0041) (0.0039) (0.0041) (0.0027) (0.0022) (0.0035)

(8) Time Unemp. 0.0012 -0.0001 0.0001 -0.0006 0.0000 -0.0011 -0.0004
(0.0009) (0.001) (0.0009) (0.001) (0.0006) (0.0005) (0.0008)

(9) Attended Ivy+ -0.0009 -0.0051 -0.0020 0.0003 -0.0043 -0.0008 -0.0028
(0.0023) (0.0025) (0.0024) (0.0025) (0.0014) (0.0012) (0.002)

(10) CS Degree 0.0069 -0.0023 -0.0031 -0.0033 -0.0039 0.0014 -0.0045
(0.0021) (0.0023) (0.0022) (0.0022) (0.0013) (0.0011) (0.0017)

(11) Grad School 0.0080 -0.0023 -0.0053 -0.0062 0.0009 -0.0001 -0.0011
(0.0021) (0.0023) (0.0021) (0.0022) (0.0012) (0.001) (0.0016)

(12) FAANG 0.0026 -0.0017 -0.0049 -0.0046 -0.0027 -0.0007 -0.0008
(0.0028) (0.0029) (0.0028) (0.0029) (0.0015) (0.0013) (0.0022)

(13) No. Prior Jobs -0.0008 -0.0003 -0.0009 -0.0001 0.0006 0.0001 0.0008
(0.0005) (0.0005) (0.0005) (0.0005) (0.0003) (0.0002) (0.0004)

(14) Fulltime -0.0042 0.0017 0.0029 0.0029 -0.0011 -0.0022 0.0032
(0.0021) (0.0023) (0.0022) (0.0023) (0.0014) (0.0011) (0.0018)

(15) Sponsorship -0.0029 0.0146 0.0072 0.0084 0.0012 0.0002 -0.0018
(0.0027) (0.0029) (0.0027) (0.0027) (0.0015) (0.0012) (0.002)

(16) Remote 0.0008 0.0048 0.0011 -0.0002 0.0012 0.0010 0.0029
(0.002) (0.0022) (0.002) (0.0021) (0.0012) (0.001) (0.0016)

(17) Java 0.0030 -0.0007 0.0036 0.0046 -0.0048 -0.0044 0.0012
(0.0021) (0.0023) (0.0021) (0.0022) (0.0012) (0.001) (0.0017)

(18) Python 0.0028 -0.0007 -0.0029 -0.0035 0.0015 0.0024 -0.0028
(0.002) (0.0021) (0.002) (0.002) (0.0012) (0.001) (0.0016)

(19) SQL -0.0028 0.0061 0.0048 0.0041 0.0005 0.0026 0.0001
(0.0022) (0.0024) (0.0023) (0.0023) (0.0013) (0.0011) (0.0018)

(20) C 0.0096 -0.0136 -0.0086 -0.0093 0.0001 0.0009 0.0011
(0.0025) (0.0028) (0.0026) (0.0027) (0.0015) (0.0013) (0.0022)

Std. Dev. of νij (σ̂ν) 0.0690 (0.0001) — N = 182, 550 Implied R2 = 0.903

Note: This table reports maximum likelihood parameter estimates from our preferred
labor demand model. The parameters relate combinations of candidate and firm charac-
teristics to the distribution of firms’ valuations. Each cell reports the coefficient on the
interaction of the variables specified in the corresponding row and column. Row vari-
ables are candidate characteristics (xi), and column variables are firm characteristics
(zj).
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I Welfare: decompositions and counterfactual simulations

I.1 A Decomposition of (Expected) Inclusive Values

Given our estimates of amenity values and labor supply elasticies, it is possible to
characterize the utility value candidates associate with the portfolios of bids they
receive. This allows us to ask whether observable differences in average bids be-
tween groups are reflective of underlying differences in welfare. Recall that the utility
candidate i of type q associates to firm j’s bid is:

Viqj = uq(bij, ai) + Aqj + ξij.

For the purposes of analyzing welfare, we add back a normalized outside option term
to the monetary component utility function:

uq(bij, ai) = (θq0 + θq1 · 1[bij < ai]) · log(bij/ai) + θq0 · (log(ai)− E [log(ai)]) ,

where E [log(ai)] is the average log ask across all candidates. We normalize candidates’
outside options (j = 0) by setting bi0 = ai and Aq0 = 0 (we therefore subtract Aq0
from each Aqj). Let µiqj = exp(uq(bij, ai)) and recall that ρqj = exp(Aqj). Then i’s
type-q specific inclusive value Λiq can be written as:

Λiq = E
[

max
j:bij>0

Viqj

]
= log

∑
bij>0

exp
(
uq(bij, ai) + Aqj

) = log
∑
bij>0

µiqj · ρjq

 .
Next, define the following quantities:

Ni =
∑
bij>0

1
︸ ︷︷ ︸
# Bids + 1

, µiq = 1
Ni

∑
bij>0

µiqj︸ ︷︷ ︸
Average Monetary Value

, ρiq = 1
Ni

∑
bij>0

ρqj︸ ︷︷ ︸
Average Amenity Value

, γiq = 1
Ni

∑
bij>0

µiqj
µiq
· ρqj
ρiq︸ ︷︷ ︸

Normalized Covariance

.

Given these definitions, we may write:

Λiq = log(Ni · µiq · ρiq · γiq) = log(Ni) + log(µiq) + log(ρiq) + log(γiq).

Because types are not observed, we compute the expected inclusive value Λi by taking
the average of Λiq’s over the conditional distribution of types given i’s observables.
These probabilities are given by αiq = αq(xi | β̂), and unconditional type prob-
abilities are denoted by αq. We may then write the expected inclusive value as:

69



Λi = ∑Q
q=1 αiqΛiq. We decompose this value as follows:

Λi = log(Ni)︸ ︷︷ ︸
Scale Comp.

+
Q∑
q=1

αq log(µiq)︸ ︷︷ ︸
Monetary Comp.

+
Q∑
q=1

αq log(ρiq)︸ ︷︷ ︸
Amenity Comp.

+
Q∑
q=1

αq log(γiq)︸ ︷︷ ︸
Correlation Comp.

+
Q∑
q=1

(αiq − αq)Λiq︸ ︷︷ ︸
Type-Specific Comp.

.

This decomposition splits Λi into five components: 1) a scale component that increases
in the number of bids i receives, 2) a monetary component that is a function only of
i’s ask and the bid salaries (bij) i receives, 3) an amenity component that is a function
only of the relative amenity values associated with the bids i receives, 4) a correlation
component that captures the (cross-type average of the) direction of association be-
tween monetary and amenity values of bids i receives, and 5) a type-specific component
that captures the difference between the expected valuation of i’s portfolio of bids with
and without conditioning on i’s observables (note that the Monetary, Amenity, and
Correlation components are all defined relative to the unconditional distribution of
types). While γiq is not a standard covariance, sign (log(γiq)) = sign (Coviq(µiqj, ρjq))
and is well-defined for positive random variables.

I.2 Decomposing observed gender differences in welfare

We decompose mean differences in the components of inclusive values among the set
of observed bids using the Oaxaca-Blinder (OB) decomposition (Oaxaca 1973; Blinder
1973). The OB decomposition posits that variable Yig corresponding to individual i
in group g = {m, f} can be written as Yig = X ′igβg + εig, where Xig are covariates
measured for all individuals and E(εig) = 0. The average value of Yig in group g

is therefore given by Y g = X
′
gβg. Let ∆Y = Y m − Y f , ∆X = Xm − Xf , and

∆β = βm − βf . The OB decomposition represents the difference ∆Y as:

∆Y = X
′
mβm −X

′
fβf = ∆X ′βf︸ ︷︷ ︸

endowments

+ X
′
f∆β︸ ︷︷ ︸

coefficients

+ ∆X ′∆β︸ ︷︷ ︸
interactions

.

The classic OB decomposition apportions differences in the mean of a variable be-
tween two groups into components due to differences between those groups in: 1)
endowments (the mean of X by group); 2) coefficients or returns associated with
those covariates (βg); and 3) the interactions between coefficient and endowment
differences.41 The OB decompositions we present should be interpreted as purely

41. OB decompositions are not unique: an equivalent “reverse” decomposition may be obtained by
replacing f with m in the subscripts of the first two terms and flipping the sign of the third term.
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descriptive. However, the size of the endowments component relative to the coeffi-
cients component can provide suggestive evidence about the sources of gender gaps.
Roughly speaking, the larger the coefficients component relative to the endowment
component, the stronger the suggestive evidence that group differences are driven
by differences in how those groups are treated conditional on characteristics. Impor-
tantly, we exclude the ask salary as an explanatory variable in our decompositions.
The endogeneity of the ask salary complicates the interpretation of decompositions
that include it as an explanatory variable: if the ask salary is a function of gender,
then it may not be appropriate to interpret gender differences in asks as reflecting
differing endowments.42

We report decompositions of mean gaps in the number of bids received, log ask
salary and the (expected) inclusive value and its five sub-components in Table I.1
(here, women are the reference group, and positive differences correspond to larger
values for men). The first row decomposes the gap in the number of bids received by
men and women: on average, women receive 0.248 fewer bids than men. The second
row decomposes the ask gap. Two-fifths of the ask gap is driven be differences in
endowments, while the remaining three-fifths is driven by differences in coefficients,
suggesting that women set lower asks than men even when they have identical observ-
ables. The third row decomposes the significant gender gap in welfare as measured
by the inclusive values associated with of candidates’ offer sets. The decomposition
apportions roughly 55% of this gap to differences in endowments, and 45% to differ-
ences in coefficients. While it is not possible to provide a causal interpretation of this
decomposition, the substantial component associated with differences in coefficients
is suggestive evidence of either differences in bargaining power or employer discrim-
ination (or both). The remaining rows decomposes each of the five components of
inclusive values. The Scale and Monetary components of inclusive values account for
nearly the entire gap, although 2.3% of the gender gap in welfare is attributable to the
fact that men receive bids from firms with better amenities than women do. Taken
together, these results suggest that the large observed gender gap in bids is reflective
of a large gender gap in welfare. Unconditionally, the gap in welfare between men and
women is exacerbated by differences in the amenity values of the bids they receive.
Gender differences in endowments account for the majority of the unconditional gaps.

42. Because we omit the ask salary from these decompositions, the effect of differences in the ask
salary will be apportioned between the endowments and coefficients components. Any differential
patterns in the relationship between characteristics and asks will be reflected in the coefficients
component, while mean differences in asks are reflected in the endowments component.
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Table I.1: Oaxaca-Blinder Decompositions of Gender Gaps

(1) (2) (3) (4) (5) (6) (7) (8)
Mean Difference Endowments Coefficients Interactions

∆Y SE ∆X ′βm SE X
′
f∆β SE ∆X ′∆β SE

Number of Bids 0.248 (0.040) 0.410 (0.029) -0.143 (0.038) -0.019 (0.028)
Log of Ask Salary 0.101 (0.003) 0.039 (0.002) 0.061 (0.003) 0.000 (0.002)
Inclusive Value = 0.443 (0.015) 0.243 (0.011) 0.205 (0.014) -0.005 (0.010)

+ Scale Comp. 0.042 (0.007) 0.066 (0.005) -0.027 (0.006) 0.002 (0.004)
+ Monetary Comp. 0.389 (0.011) 0.156 (0.008) 0.230 (0.010) 0.003 (0.007)
+ Amenity Comp. 0.010 (0.003) 0.018 (0.002) -0.003 (0.003) -0.005 (0.002)
+ Correlation Comp. 0.001 (0.000) 0.000 (0.000) 0.000 (0.001) 0.001 (0.000)
+ Type-Specific Comp. 0.001 (0.001) 0.003 (0.001) 0.004 (0.001) -0.006 (0.001)

Note: This table reports Oaxaca-Blinder decompositions of gender gaps in components of utility. Each row
corresponds to a particular quantity. Columns 1 and 2 report the mean differences for that quantity (1) and
the standard error associated with that difference (2). Columns 3 and 4 report the Endowments component
of the OB decomposition (3) and the standard error associated with that component (4). Columns 5 and 6
report the Coefficients component of the OB decompostion (5) and the standard error associated with that
component (6). Finally, columns 7 and 8 report the Interactions component of the O decomposition (7) and
the standard error associated with that component (8).

I.3 Counterfactual scenarios of interest

To better understand the welfare implications of imperfect competition, we use our
supply and demand estimates to simulate bidding outcomes under all four conduct sce-
narios: {monopsonisitic competition, oligopsony}× {not predictive, type-predictive}.
To gauge the losses due to imperfect competition, we define a new form of conduct,
which we term price taking. Under this alternative, firms have no discretion over
the wages they offer. Instead, firms are constrained to offer a prevailing market wage,
as if set by a Walrasian auctioneer. In our price-taking alternative, we set the equilib-
rium wage equal to the systematic component of firms’ valuations, bij = exp(z′jΓxi).
Given this set of wages, the only decision firms have to make is whether to bid on
each candidate. Because firms are price takers in this scenario, we assume that they
view themselves as atomistic, as in monopsonistic competition.43 In addition to these
simulations, we also simulate the effects of a simple policy meant to reduce gender
disparities in wages: blinding employers to candidates’ gender. This counterfactual
entails replacing gender-specific estimates of labor demand with cross-gender aver-
ages, and doing the same for estimates of labor supply.

43. Because bids vary conditional on detailed controls, price-taking is automatically ruled out as
a mode of conduct that can describe firms’ actual bidding behavior on the platform.
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I.4 Computing new counterfactual equilibria

In order to compute counterfactuals, we randomly select 500 candidates from the
subset of candidates who are software engineers with 6-10 years of experience and
1,000 firms from the subset of firms who bid on such candidates (the 2-1 ratio of
firms to candidates approximates the average level of on-platform tightness for this
submarket). For each firm-candidate pair, we compute the model-implied systematic
component of firm valuations using our preferred estimates of labor demand param-
eters, exp(z′jΓ̂xi). Under a particular conduct assumption, equilibrium is determined
by a set of beliefs over the distribution of the utility afforded by the best option in
each candidates’ offer set. The inclusive value is a sufficient statistic for the distri-
bution of the maximum utility option for each candidate. At an equilibrium, firms’
beliefs about inclusive values must be consistent with the true distribution of inclusive
values generated by the bidding behavior of competing firms.

To compute new equilibria, we first conjecture an initial set of (expected) inclusive
values Λ1

iq. We then iterate the following steps:

1. At iteration t, take iid draws from a normal distribution with mean zero and
standard deviation σ̂ν to produce a new set of idiosyncractic components of
firms’ valuations, νtij. Use these draws, plus the systematic components of
valuations z′jΓ̂xi, to compute εtij.

2. Given εtij and Λt
i, compute btij as firm j’s best response (under the assumed form

of conduct m). If there is no number b such that Gm
ij (b)(εij − b) ≥ ĉj, then set

btij = 0.

3. Given firms’ best responses btij, calculate the realized inclusive values for each
candidate, Λt∗

iq = E[log(∑j:bt
ij>0 exp(uq(btij, ai) + Aqj)]. Compute the vector of

expected inclusive values at the next iteration by taking a step αt ∈ [0, 1]
towards Λt∗

iq :
Λt+1
iq = αtΛt∗

iq + (1− αt)Λt
iq.

We iterate this procedure until the distribution of inclusive values converges. We then
compute mean counterfactual outcomes by averaging over firms’ best responses given
the equilibrium distribution of inclusive values across 50 draws of νij.
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I.5 Simulation Results

Table I.2 reports the results of our simulations. For each scenario, we compute the
number of bids received per candidate, the expected inclusive value of the candidate’s
portfolio of bids, and the five components of that expected inclusive value. We also
compute the average monetary value of the bids candidates receive, the difference
between those bids and candidates’ asks (as a percent of the ask), and the markdown
(as a percent of firms’ valuations), conditional on having received at least one bid.

The unconditional means of each of these variables across simulation repetitions
are reported in Panel A of Table I.2. We first consider scenarios in which firms
are assumed to be not predictive (columns 1-3). Unsurprisingly, average bids are
higher ($161k vs $133k or $130k) and markdowns are lower (12.33% vs 19.01% or
21.67%) in the price taking model (column 1) relative to the preferred monopsonistic
competition model (column 2) or the oligopsony model (column 3). Additionally,
candidates receive markedly more bids (19.33 vs 6.26 or 6.13) under price taking
than under monopsonistic competition or oligopsony. These factors combine to make
overall expected utility lower under monopsonistic competition or oligopsony than
under price taking (with the caveat that absolute utility levels not possible to inter-
pret). Strikingly, the simulations suggest that candidates’ welfare losses relative to
price taking are 44% larger under oligopsony than under monopsonistic competition.
The lion’s share of this difference is accounted for by a drop in the average amenity
value of bids candidates receive under oligopsony relative to monopsonistic compe-
tition. While the story is broadly the same under type-predictive conduct (columns
4-6), there are some notable differences. First, the number of bids candidates receive
and overall welfare is higher under type-predictive conduct, although markups are
also slightly higher. These changes are more muted under oligopsony than under
monopsonistic competition: the average candidate receives nearly one additional bid
under type-predictive monopsonistic competition than under not-predictive monop-
sonistic competition, but just 0.1 additional bids under type-predictive oligopsony
relative to not-predictive oligopsony. The average amenity value of candidates’ bids
drops for each of these conduct assumptions, but this drop is more than made up
for by large increases in the type-specific component, suggesting that firms are able
to target bids to the candidates who most strongly value their amenities. Interest-
ingly welfare losses relative to price taking under type-predictive conduct are 9.7%
lower under monopsonistic competition and 4.8% lower under oligopsony than under
not-predictive conduct, suggesting that while increased targeting of bids can yield
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additional market power to firms, that effect is more than counterbalanced by the
increased value of the amenities candidates receive.

Panel B of Table I.2 reports differences in these statistics by gender. Under all
conduct scenarios, women receive fewer bids, lower bids, and higher markdowns than
men. Although the absolute level of the difference in number and monetary value
of bids is larger under price taking than under monopsonistic competition or oligop-
sony, the relative difference in these quantities is smaller: under not-predictive (type-
predictive) conduct, women receive 6.9% (8.2%) fewer bids under price taking, but
7.7% (9.0%) fewer bids under monopsonistic competition and 13.2% (10.37%) fewer
bids under oligopsony. Similarly, the relative difference between the bids men and
women receive is roughly 9.6% under price taking, 9.8% under monopsonistic com-
petition, and 10.5% under oligopsony (in both not-predictive and type-predictive
scenarios). These gaps lead to substantial differences in welfare between women and
men across all scenarios, and are larger under type-predictive conduct than under
not-predictive conduct. The upshot of these results is that while firms’ exercise of
labor market power tends to lower welfare for all workers, it also tends to expand
gender gaps, as first posited by Robinson (1933).

Can a simple policy that blinds employers to the gender of the candidates they
consider narrow these gaps? Panel C of Table I.2 reports differences between mean
outcomes for men and women across simulation draws in which firms are constrained
to no longer observe candidate gender. The results from our simulations suggest that
the efficacy of such a policy is relatively limited. Under our preferred model of firm
conduct (not predictive, monopsonistic competition), the gender gap in welfare de-
clines by 11.0%. However, such a policy is predicted to increase the gap in welfare
by 5.4% under not-predictive oligopsony conduct, and the predicted effect on welfare
varies substantially across conduct scenarios. These policy simulations suggest that
interventions to remove information will likely be less effective in closing gender gaps
in labor market outcomes than interventions that nudge women to adopt bargaining
positions closer to those of similar-qualified men (e.g. increase their ask salaries, as in
Roussille 2023). Further, the variability in predicted policy effects across conduct sce-
narios further underscores the importance of testing assumptions around firm conduct
for informing analysis of and policy for labor markets.
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Table I.2: Counterfactual Simulations

(1) (2) (3) (4) (5) (6)
Panel A: Unconditional Means

Not Predictive Type-Predictive
PT MC OG PT MC OG

Number of Bids/Candidate 19.33 6.26 6.13 19.83 7.23 6.25
Bid Salary $161k $133k $130k $161k $133k $130k
Bid − Ask (as % of Ask) 20.24 -0.48 -2.81 20.27 -0.38 -3.09
Markdown (%) 12.33 19.01 21.67 12.28 18.92 21.79
Inclusive Value = 4.467 3.164 2.593 4.560 3.384 2.776

+ Scale Component 2.981 1.937 1.863 3.002 2.055 1.892
+ Monetary Component 0.706 0.005 -0.092 0.707 0.009 -0.104
+ Amenity Component 0.792 1.302 0.824 0.749 1.073 0.817
+ Correlation Component 0.003 -0.042 -0.049 0.005 -0.032 -0.060
+ Type-Specific Component -0.016 -0.038 0.048 0.098 0.279 0.232

Panel B: Differences, Women - Men

Not Predictive Type-Predictive
PT MC OG PT MC OG

Number of Bids/Candidate -1.330 -0.480 -0.809 -1.618 -0.654 -0.648
Bid Salary -$15.4k -$13.0k -$13.4k -$15.4k -$12.8k -$13.8k
Bid − Ask (as % of Ask) 0.72 0.46 -0.20 0.73 0.57 -0.22
Markdown (%) 0.05 0.25 0.72 0.07 0.15 0.90
Inclusive Value = -0.457 -0.408 -0.483 -0.461 -0.464 -0.511

+ Scale Component -0.067 -0.057 -0.159 -0.082 -0.063 -0.122
+ Monetary Component -0.369 -0.335 -0.334 -0.369 -0.335 -0.346
+ Amenity Component 0.011 0.042 -0.014 -0.004 -0.071 -0.063
+ Correlation Component -0.002 -0.024 -0.029 -0.002 -0.011 -0.012
+ Type-Specific Component -0.031 -0.035 0.053 -0.004 0.017 0.031

Panel C: Differences, Women - Men, Gender Blind Firms

Not Predictive Type-Predictive
PT MC OG PT MC OG

Number of Bids/Candidate -1.220 -0.353 -0.626 -1.341 -0.439 -0.684
Bid Salary -$14.7k -$12.7k -$12.9k -$14.7k -$12.6k -$12.7k
Bid − Ask (as % of Ask) 1.24 0.69 0.20 1.23 0.76 0.36
Markdown (as % of MRPL) 0.05 0.43 0.70 0.05 0.35 0.70
Inclusive Value = -0.435 -0.363 -0.509 -0.440 -0.427 -0.463

+ Scale Component -0.061 -0.038 -0.146 -0.066 -0.035 -0.128
+ Monetary Component -0.352 -0.327 -0.324 -0.353 -0.327 -0.328
+ Amenity Component 0.011 0.048 -0.049 -0.001 -0.050 -0.026
+ Correlation Component -0.002 -0.022 -0.020 -0.002 -0.012 -0.015
+ Type-Specific Component -0.030 -0.024 0.030 -0.017 -0.003 0.034

Note: This table reports results of counterfactual simulations under various conduct assumptions.
Each column corresponds to a combination of conduct assumptions (PT = price-taking, MC =
monopsonistic competition, and OG = oligopsony). Each cell reports the average of a statistic over
50 simulation draws. Panel A reports the unconditional means, Panel B reports differences in means
between women and men, and Panel C reports differences in means between women and men for
simulations in which firms are constrained to be gender blind.
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