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Abstract

We develop a procedure for adjudicating between models of firm wage-
setting conduct. Using data from a U.S. job search platform, we propose a
methodology to aggregate workers’ choices over menus of jobs into rankings
of firms’ non-wage amenities. We use these estimates to formulate a test of
conduct based on exclusion restrictions. Oligopsonistic models incorporat-
ing strategic interactions between firms and tailoring of wage offers to work-
ers’ outside options are rejected in favor of monopsonistic models featuring
near-uniform markdowns. Misspecification has meaningful consequences: our
preferred model predicts average markdowns of 19.5%, while others predict
average markdowns as large as 26.6%.
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1 Introduction

Canonical models of wage determination assume that labor markets are perfectly
competitive—that “markets set wages” (Card 2022). However, a rapidly growing
body of empirical evidence suggests that employers have wage-setting power (Man-
ning 2005; 2011; Card et al. 2018). When markets are not perfectly competitive,
wage determination depends on the nature of firm wage-setting conduct: how firms
determine which workers to hire, and how much to pay them. Under imperfect com-
petition, firms need not set wages equal to the marginal revenue product of labor;
rather, a variety of forms of wage-setting conduct may prevail.

While recent work has shifted the view from “markets set wages” to “firms set
wages,” most studies impose a specific model of firm conduct and test it against
perfect competition. For instance, some adopt models with strategic interactions
among non-atomistic firms, while others ignore such interactions. In practice, studies
make a host of additional untested assumptions about key aspects of wage-setting
conduct, including whether firms price discriminate between workers, bargain over or
post wages, collude with competitors, or respond to common ownership incentives.
These choices matter: different conduct models yield very different implications for
wage dispersion and market power. Erroneous assumptions about the form of conduct
therefore bias inferences about markdowns, welfare, and efficiency.

This paper develops a testing procedure to adjudicate between non-nested models
of firms’ wage-setting conduct. We then apply this procedure to provide direct evi-
dence about the nature of firm conduct using novel data from a high-wage labor mar-
ket. Motivated by recent interest in both the information firms act on and the norms
firms abide by when setting wages (Derenoncourt et al. 2022; Cullen, Li, and Perez-
Truglia 2022; Hazell et al. 2022), we focus on two alternatives: first, whether firms
compete strategically (Berger, Herkenhoff, and Mongey 2022; Lamadon, Mogstad,
and Setzler 2022) and second, whether firms tailor wage offers to individual workers’
outside options (Postel-Vinay and Robin 2002; Jäger et al. 2024).1

Our testing procedure builds upon two recent developments. The first is the rise
of online job platforms that collect granular data on salary determination beyond just
the salaries of realized matches. This data enables credible estimation of firm-specific
labor supply curves, which is necessary to characterize the scope of firms’ wage-setting

1. These alternatives are important features of wage-setting conduct, but they are by no means
the only ones. While our setting is not well-suited for testing certain alternatives—such as between
bargaining or posting theories of wage determination (Giupponi et al. 2024)—our methods can be
adapted to test between a wide variety of conduct alternatives in other labor markets.
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power (Azar, Berry, and Marinescu 2022). The second is the increasing use of tools
from the modern industrial organization (IO) literature to study the price-setting
conduct of firms in product markets (beginning with Bresnahan (1987), reviewed by
Gandhi and Nevo (2021)). At a high level, our strategy mirrors the marginal cost
estimation procedure of Berry, Levinsohn, and Pakes (1995): given estimates of la-
bor supply, applying an assumption about firm conduct reveals implied equilibrium
markdowns and therefore firms’ willingness to pay for labor. In the first step, we
propose a novel technique for estimating labor supply to differentiated firms, which
we use to construct model-implied markdowns under various conduct assumptions.
Following Berry and Haile (2014), Backus, Conlon, and Sinkinson (2021) and Duarte
et al. (2024), we test between conduct alternatives via an exclusion restriction: in-
struments that affect labor supply but do not affect the marginal revenue product of
labor should be uncorrelated with recovered demand residuals under the true conduct
assumption. Our testing procedure ranks models by comparing the degree to which
they violate this exclusion restriction.

To disentangle labor supply from labor demand without imposing restrictive as-
sumptions on the underlying model of firm conduct, it is necessary to observe workers’
choice sets over jobs. However, this has typically been impossible outside experimen-
tal settings: matched employer-employee data only record the realized transitions of
workers between firms.2 We overcome this limitation using data from Hired.com, a
large online job platform where firms bid on (apply to) candidates rather than the
reverse. Each bid contains a description of the vacancy and an amount the firm is
willing to pay the candidate (the “bid salary”). Candidates then decide whether or
not to interview with the firms they received bids from. This setting allows us to (i)
observe each candidate’s complete set of options, since candidates can only enter the
recruitment process at firms that bid on them, (ii) infer candidates’ revealed prefer-
ences from bid acceptances and rejections, and (iii) measure firms’ willingness to pay
for candidates, including those they do not hire.

Armed with these data, we turn to the analysis of worker preferences. We first
propose a novel method for estimating the non-wage amenity values candidates as-
sociate with firms. Our estimator ranks firms by aggregating revealed preferences
(Avery et al. 2013; Sorkin 2018): a firm’s estimated amenity value rises when its bids

2. The issue of measuring worker choice sets is widely recognized, as noted by Sorkin (2018):
“In the empirical context of [...] studying transitions between employers, it is hard to imagine a
data set that perfectly captures worker choice sets.” When workers’ choice sets are not measured,
researchers must make assumptions to proxy for the distribution of available options. However,
erroneous inference of choice sets can introduce substantial bias (Barseghyan et al. 2021).
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are accepted by candidates who reject bids from other highly ranked firms. Unlike
prior approaches, we neither assume that all candidates share the same (mean) rank-
ing of amenities, nor that candidates’ (mean) rankings are a deterministic function
of their demographics. Instead, we model preferences as a mixture of types, each
representing a group of candidates with similar preference orderings. Further, we al-
low candidates’ type probabilities to depend on a rich set of observed characteristics.
As a result, our estimator flexibly models both vertical differentiation (between-firm
differences in amenity values common to all candidates) and horizontal differentiation
(within-firm differences in amenity values across candidates).

Next, we propose a blueprint for analyzing labor demand that allows us to adju-
dicate between non-nested models of firm wage-setting conduct. Given labor supply
estimates, each conduct assumption defines a unique mapping between (observed)
bids and the (unobserved) match-specific marginal revenue product of labor (MRPL).
By plugging in our first-step labor supply estimates and inverting these mappings,
we recover the match-specific MRPL (and hence the markdowns) implied by each al-
ternative conduct assumption. To adapt models of conduct to our data, we analogize
the behavior of firms on the platform to that of bidders in a large online auction mar-
ketplace: firms compete against each other by bidding for workers’ talent. We draw
upon insights from the empirical auction literature (Guerre, Perrigne, and Vuong
2000; Backus and Lewis 2025) to define an equilibrium concept, establish the identi-
fication of markdowns, and propose a method for estimating those markdowns. To
compare models of conduct, we apply the Vuong non-nested model comparison test
(Vuong 1989; Rivers and Vuong 2002). The preferred model is the one that fits the
data best, where “fit” is assessed via an exclusion restriction: under the true model of
conduct, instruments that quasi-randomly shift firm-specific labor supply curves but
that do not affect labor productivity will yield variation in model-implied markdowns
that exactly offsets observed variation in bids, so that model-implied valuations re-
covered from our inversion are invariant to these shocks. Under incorrect conduct
assumptions, model-implied valuations remain correlated with these shocks, violating
the exclusion restriction (Backus, Conlon, and Sinkinson 2021; Duarte et al. 2024).

Our initial set of findings focuses on labor supply. First, we reject a model in
which preferences are well-described by a single (mean) ranking of firms: our pre-
ferred estimates describe preferences as a mixture of three types of workers. Second,
we document substantial vertical differentiation: the average worker is willing to pay
12.3% of her ask salary for a one-standard-deviation (1-S.D.) improvement in firm
amenities. Third, horizontal differentiation is at least as large as vertical differentia-
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tion: the average within-firm standard deviation in valuations across workers is 14%
of the ask. This large and predictable horizontal preference variation may grant firms
significant wage-setting power. Indeed, if it were priced into firms’ wage offers, equi-
librium markdowns would vary substantially not only between firms, but also across
workers within firms. Fourth, consistent with Lagos (2021) and Maestas et al. (2023),
we find that amenity dispersion amplifies inequality: firms that pay well are also firms
with better amenities. On average, a 1-S.D. increase in amenity values is associated
with a 0.325-S.D. increase in the firm pay premium.

Next, we implement our procedure for testing models of firm behavior. To formu-
late the exclusion restriction for our test, we construct an instrument that captures
quasi-random fluctuations in potential on-platform market tightness over time and
across sub-markets. Our results are robust to the choice of instrument: versions of
the test that use “BLP Instruments” (Berry, Levinsohn, and Pakes 1995) proposed by
Gandhi and Houde (2023) yield identical conclusions. As a baseline, we resoundingly
reject perfect competition against all imperfect competition alternatives.

In every version of our test, models that assume firms ignore strategic interactions
when setting wages outperform models that incorporate strategic interactions. This
finding has significant implications for the size of markdowns. Under the preferred
model, we find markdowns of 19.5% on average, while alternatives incorporating
strategic interactions imply average markdowns of 26.6%. We also find large differ-
ences between models in implied productivity dispersion across firms. Indeed, while
firms with better amenities are inferred to be more productive under both alterna-
tives, the slope of this relationship is very different. Under the preferred model, firms
with the best amenities (+2σ) are 3.4% more productive than firms with the worst
amenities (−2σ). Under the alternative, that difference is 10.6%.

We then test whether firms exploit the substantial predictable differences in firm-
specific labor supply across workers when making hiring decisions. We find that they
do not: our test rejects models in which firms offer different wages to workers with
homogeneous predicted productivity but heterogeneous preferences. This is especially
striking given that the online job board is designed to reduce information frictions
in the search and matching process. This finding also has significant implications for
the labor market: if firms did price in predictable differences in worker preferences,
offers to workers who most value a firm’s amenities would be marked down 3.0pp
more relative to those who value them least.

This paper contributes to a growing literature that adopts tools and modeling
frameworks from IO to study the nature and consequences of employers’ labor market
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power. Card et al. (2018) and Lamadon, Mogstad, and Setzler (2022) consider models
in which firms are assumed to be monopsonistically competitive: firms internalize
upward-sloping labor supply but do not interact strategically. Berger, Herkenhoff,
and Mongey (2022) and Jarosch, Nimczik, and Sorkin (2024), on the other hand,
consider models of non-atomistic firms that compete in local oligopolies. At the
same time, few studies have adapted IO tools to test between models of wage-setting
conduct (Berry and Haile 2014; Backus, Conlon, and Sinkinson 2021; Duarte et
al. 2024). The closest contribution is Delabastita and Rubens (2024), who use detailed
data to estimate production functions for Belgian coal firms and identify collusive
wage-setting conduct. This approach allows for direct estimation of wage markdowns
without relying on conduct assumptions.3 However, it is often infeasible to obtain
production data and credibly estimate production functions. While our strategy does
not require estimation of markdowns free from conduct assumptions, it does require
identification of plausible instruments for firm-specific labor supply that are excluded
from firms’ labor demand.

Our paper also fits in a longstanding literature on imperfect competition in labor
markets (Boal and Ransom 1997; Manning 2005; Bhaskar, Manning, and To 2002).
To gauge the extent of firms’ wage-setting power, recent studies have examined the re-
lationship between measures of market structure—typically, concentration measures
like the Herfindahl-Hirschman Index—and wages (Azar et al. 2020; Schubert, Stans-
bury, and Taska 2022; Arnold 2021). These analyses echo the “Structure-Conduct-
Performance” paradigm (Robinson 1933; Chamberlain 1933; Bain 1951), which posits
that firm conduct is a deterministic function of market structure, i.e., the distribution
of its competitors. But since wages and market structure are jointly determined in
models of labor markets, finding instruments that affect wages only through mar-
ket structure is notoriously difficult (Berry 2021; Schmalensee 1989). Our method
sidesteps these endogeneity issues by characterizing firms’ exercise of wage-setting
power without assuming that observed market structure reveals conduct.

Next, our paper contributes to the literature on estimating the values of non-wage
amenities (Rosen 1986). While recent papers have leveraged experiments (Mas and
Pallais 2017; Wiswall and Zafar 2018), our data allows us to study worker decisions in
a real-world, high-stakes environment (albeit specific to tech workers). Sorkin (2018),
Taber and Vejlin (2020), and Lagos (2021) use revealed preference arguments to infer
amenity values from worker flows in matched employer-employee data. We similarly

3. Yeh, Macaluso, and Hershbein (2022) also use the production function approach to measure
wage markdowns of U.S. manufacturing firms but do not test between conduct alternatives
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estimate amenity values via workers’ revealed preferences, but our full view of worker
options on the platform allows us to avoid imposing restrictive assumptions on their
choice sets. In particular, our approach shares similarities with standard IO models
of consumer demand over differentiated products, which often describe preferences as
a mixture of normally-distributed random coefficients associated with product and
consumer characteristics (in other words, a consumer’s “type” is her vector of random
coefficients). Like the hedonic approach for assessing compensating differentials —
which has had limited empirical success (Mas and Pallais 2017) — this framework
restricts preference heterogeneity to be a function of known product (or firm) char-
acteristics and requires researchers to pre-specify which characteristics are relevant.
Instead, we model worker preferences as draws from a categorical distribution of la-
tent types and place no restrictions on the vertical ranking of firms conditional on a
worker’s type. Finally, our paper demonstrates how firms’ wage-setting power jointly
depends on firms’ conduct and the extent of horizontal and vertical differentiation
in workers’ valuations of amenities: average markdowns are largest when firms can
predict workers’ types and those types are highly differentiated.

Finally, our paper contributes to a nascent literature on competition in online
platforms, which has become the dominant job-search method in the U.S. (Faberman
and Kudlyak 2016). We propose models of imperfect competition adapted to online
settings, blending features of online auction marketplaces and traditional labor mar-
kets. Closest to our work is Azar, Berry, and Marinescu (2022), who gauge employer
market power by estimating labor supply to individual firms on a large online job
board using discrete choice models. We complement their approach by incorporating
horizontal preference differentiation and explicitly testing between models of conduct.

2 Setting and Data

2.1 Market description

Estimates of firm-specific labor supply curves are a necessary input for testing between
models of wage-setting conduct. A key limitation of the literature estimating labor
supply to differentiated firms is that workers’ choice sets are rarely observed, especially
in high-stakes, real-world environments. Because of this, existing estimates of worker
preferences are either computed in surveys and lab environments (Wiswall and Zafar
2018; Mas and Pallais 2017), or reliant on strong assumptions applied to observational
data. In survey and experimental settings, while samples can be representative of the
population (or sub-population of interest), choices are made over hypothetical jobs.
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In observational settings, estimates may be confounded by unobserved differences in
workers’ choice sets, leading to erroneous inferences about their options. To overcome
these limitations, we use unique data from Hired.com, a large online recruitment
platform for workers and firms in the tech sector. Two features of the recruitment
process on Hired.com are particularly relevant.

First, wage bargaining on Hired.com is high-stakes: the average candidate on the
platform is a software engineer living in San Francisco with 11.4 years of experi-
ence looking for a full-time job with an expected salary of $139,000. Candidates on
Hired.com are highly qualified: 98.9% have at least a college degree (with 51.9% hav-
ing additionally completed some form of graduate education), and 10.8% have prior
experience at a FAANG company. Most candidates are engaging in on-the-job search:
74.9% report being currently employed. We report additional summary statistics for
both candidates and firms in Appendix Table B.2.

Second, the recruitment process on Hired.com allows us to cleanly identify both
the set of firms that contact each candidate and the full set of candidate characteristics
observable to firms when deciding whom to approach.. This stems from the platform’s
distinctive timeline: firms apply to candidates based on their profiles, and candidates
decide whether or not to interview with companies based on the job descriptions and
bid salaries they receive.4 Importantly, candidates cannot view or apply to postings
directly—firms must initiate contact. As a result, we know the choice set of each
candidate on Hired.com (the set of all firms that bid on them) and their subsequent
choices (whether to accept or reject each interview request). Although workers may
search elsewhere and firms may recruit through multiple channels, Section 5.4 explains
why unobserved off-platform options do not threaten the validity of our estimates of
labor supply or labor demand.

Formally, the recruitment process unfolds in three steps, as illustrated in Figure 1.
First, candidates create a profile that contains standardized resume entries (education,
past experience, etc.) and the salary they would prefer to make: the ask salary.5

4. While the data recorded on Hired.com is unique, the recruitment steps make explicit what
effectively occurs during the majority of high-wage interviews: candidates are asked to disclose their
desired salary. Section II.C of Roussille 2024 provides more details on how the recruitment on
Hired.com compares to other platforms.

5. See Appendix Table B.1 for a detailed description of the variables listed on a candidate’s profile.
In short, every profile includes the current and desired location(s) of the candidate, their desired job
title (software engineering, web design, product management, etc.), their experience in this job, their
top skills, their education, their work history (i.e., firms they worked at), their contract preferences
(remote or on-site, contract or full-time), as well as their search status, which describes whether the
candidate is actively searching or simply exploring new opportunities. The ask salary is prominently
featured on all profiles since it is a required field.
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Figure 1: Timeline of the Recruitment Process on Hired.com

time

Supply side Demand side Demand meets supply

+ Equity (Optional)

Candidate 
creates profile

Ask salary

Company sends 
an interview 

request

If the company wants 
to hire the candidate

Bid salary

Interview

If candidate accepts 
the request

Final salary

Hired

If the candidate 
accepts the offer

Job offer

Note: This figure depicts the timeline of a recruitment on Hired.com. Salaries that are captured on
the platform are denoted in red. The steps of the process, from profile creation to hiring, are colored
blue. We do not have metadata from companies on the interview process.

Second, firms access candidate profiles that match standard requirements for the job
they want to fill (job title, experience, and location). To request an interview with a
candidate, the company sends them a message—the interview request—that typically
contains a description of the job as well as, crucially, the salary at which they would
be willing to hire the candidate: the bid salary.6 Third, Hired.com records whether
the candidate accepts or rejects the interview request. Although interviews occur
off-platform, Hired.com tracks whether the firm ultimately makes a job offer and, if
so, the final salary at which the candidate is hired.7 The bid salary is non-binding,
so bid and final salaries may differ.

When modeling the recruitment process on Hired.com, we abstract from dynamic
considerations for several reasons. Candidate profiles are only visible to firms for two
weeks by default, so candidates collect and consider bids over a short time frame.
The median candidate who receives multiple bids collects those bids within a single

6. The message can also, optionally, contain an equity field. However, this field is difficult to
harmonize across interview requests, as it is open-text: recruiters may write vague entries such
as “some” or provide detailed descriptions. In practice, we can still generate a dummy variable
indicating whether the field is filled. Within the connected set (our analysis sample, described in
Section 2.2, 87.5% of jobs either offer equity to all candidates they bid on or to none of them,
implying that most firms do not tailor their equity offers to individual candidates. Bonuses (e.g.
hiring bonuses or performance bonuses) are not reported in the Hired.com data.

7. While complete accuracy of final offers cannot be guaranteed, several features ensure high-
quality data. During the study period, Hired.com was paid by most firms only when a final hire
was made, giving the platform strong incentives to verify reports. Fraud is also easy to detect,
as Hired.com logs all interviews and can cross-check them against firms’ public employee lists.
Moreover, a single instance of fraud is costly as it could result in permanent removal from the
platform.
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week. Further, we find strong evidence that firms send most interview requests for
the same job concurrently: the median time difference between sequential bids for
the same job is about 13 minutes. Finally, firms do not observe the remaining time
candidates have on the platform and thus cannot bid strategically over time.

2.2 Sample restrictions

Candidates in San Francisco represent 76% of all bids on the platform. We therefore
focus our analysis on this subset, which represents the largest homogeneous labor
market on the platform. For this segment of the platform, as Appendix Table B.2
illustrates (in the "All" Column), 2,121 companies sent out 267,940 bids to 44,321
candidates, averaging 15.8 bids per job and 4.3 bids per candidate.

As is standard in the literature on firm fixed effects (Sorkin 2018), we are only
able to estimate amenity values for firms that are members of a connected set. To be
a member of this set, a firm must have been both revealed-preferred by a candidate
in the connected set to at least one member of the set, and have been revealed-
dispreferred by a candidate in the connected set to at least one member of the set.
1,649 companies meet requirements for inclusion, while 472 do not. For a worker to
be in our analysis sample, they must have accepted at least one bid from a firm in the
connected set and rejected at least one bid from a firm in the connected set (otherwise,
we cannot infer a ranking from their choices). By construction, candidates with fewer
than two bids are excluded from the connected set and candidates with fewer bids
are less likely to be in it. This is reflected in Appendix Table B.2, which shows that
workers in the connected set receive on average 12.5 bids, while those outside receive
on average 3.0 bids. With these restrictions, we retain 124,075 bids from firms in the
connected set made to 14,344 candidates, averaging 9.8 bids per job and 7.1 bids per
candidate.8

Since we only lose less active firms/workers, the connected set still accounts for
two-thirds of all bids on the platform. Appendix Table B.2 further shows that can-
didates and firms inside and outside the connected set are comparable. For instance,

8. There is one additional condition that further restricts our connected set and which is applied
in the “Connected Set” columns of Table B.2: we subset to bids made by firms at the same salary.
Conceptually, matching on bid salary allows us to difference out the monetary part in the workers’
utility function, thereby obviating the need for instruments for the wage. This restriction was
motivated by an empirical feature of our data: close to 80% of the bids received by a given worker
are made at the same wage. That is because most firms’ bids match the candidate’s ask, as illustrated
in Figure 2e. In other contexts where this exact feature may not hold, our blueprint could still be
applied assuming valid instruments for the wage could be identified: this is the approach taken by
Azar, Berry, and Marinescu (2022).
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candidates share similar education levels, years of experience, and employment rate.
Candidates in the set are more likely to be software engineers (76% vs. 65%) and look
for jobs in San Francisco (85% vs. 63%), reflecting the fact that this is the most com-
mon occupation and that we limit to firms hiring in San Francisco. The distributions
of firm age and industry are also similar inside and outside the connected set, though
the connected set includes fewer very small firms (1–15 employees), which send fewer
bids and are thus less likely to be rankable.

Although our analysis focuses on a specific market—the tech industry in the Bay
Area—both firms and workers on Hired.com are highly representative of this market
and constitute a sizable share of it. Section II.A in Roussille (2024) shows that the
characteristics of workers (e.g. wages, experience, and gender) and firms (e.g. size and
industry) on Hired.com closely mirror characteristics on other platforms. Appendix C
benchmarks against administrative data, showing that our connected set covers about
10% of software/web workers in the Bay Area and about a third of tech/information
firms in the Bay Area with over 500 employees.

2.3 Stylized facts

Significant heterogeneity in bid acceptance. Panel (a) of Figure 2 plots the
distribution of the share of each firm’s bids that are accepted. Two features stand
out. First, rejections are common: on average, candidates only accept 60.5% of the
interview requests they receive. Second, there is significant heterogeneity across com-
panies in the likelihood that a request is accepted: 10.2% of firms see less than 40%
of their requests accepted, while 16.2% of firms see more than 75% of their requests
accepted. These patterns motivate modeling candidates’ outside options as a key
parameter in their interview decision (Section 3.1). Additionally, the wide variation
in acceptance rates across firms is suggestive of significant vertical (between-firm)
differentiation, which motivates our revealed-preference approach.

Reference-dependence of labor supply. Panel (b) of Figure 2 plots the probabil-
ity that an interview request is accepted as a function of the ratio of the bid salary to
the ask salary. Acceptance rates rise with higher bids, but the slope is steeper when
bids fall below the ask than when they exceed it. On average, a bid at 10% below the
ask has an acceptance probability that is 10-15pp lower than a bid at the ask, while
a bid at 10% above the ask has an acceptance probability only 5pp higher than a bid
at the ask. This suggest that candidates’ labor supply may be reference-dependent in
their ask. Although one cannot definitively place a structural interpretation on these
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patterns without accounting for selection, we bolster this interpretation using candi-
dates’ reason for rejecting a bid, which is available for a subset of the observations.9

Panel (c) of Figure 2 plots the probability that a candidate selects “insufficient com-
pensation” as the reason for rejecting a bid as a function of the bid-to-ask ratio. The
relationship has a sharp kink at bid=ask: the slope (and level) is almost exactly zero
when bid>ask, and is strongly negative when bid<ask. In practice, virtually no bids
above the ask are rejected for low pay, but when the bid is 20% below the ask, about
25% of rejections cite “insufficient compensation.” We refer to this as “kinked labor
supply” and formally allow for labor supply elasticities to differ above and below the
ask in our model.10

Individualized pricing and the absence of wage posting. Wage posting, while
common in many labor markets, is absent in our setting. The average within-job
standard deviation of bid salaries is $19,697, and only 2.6% of jobs bid the same
amount to all candidates, indicating that firms offer a wide range of salaries to can-
didates for the same vacancy. Panel (d) and Panel (e) of Figure 2 detail these facts.
Panel (d) plots the relationship between the bid premium—the difference between
bid and ask salaries—and the deviation of the ask from the average ask of candidates
who receive bids for the same job. If firms posted wages, they would offer everyone
the same bid, and points would lie on the -45-degree red line. Empirically, however,
the slope is much flatter than this “full compression” line. This means that, even
within the same job, firms closely match their bids with candidates’ asks, creating
substantial within-job variation in bid salaries. Similarly, Panel (e) of Figure 2 shows
that the cumulative density function (cdf) of the bid-to-ask ratio increases sharply
at bid=ask: 77% of bids are made exactly at the candidate’s ask, 15% below, and
8% above. We incorporate these patterns in our model of labor demand in two ways.
First, firms internalize the reference-dependence of candidates’ labor supply around
the ask. This creates an incentive for firms to bunch at the kink and rationalizes the
large mass of offers made at the ask. Second, we model firms’ bidding decisions as a
fully individualized process, allowing for systematic and idiosyncratic components of
match-specific productivity. A priori, we cannot say whether the sizable within-job
variation in bids is driven solely by variation in productivity11 or also by preferences

9. While this field is optional, 55% of candidates do fill it out.
10. Using a survey of 6,000 job seekers in New Jersey, Figure 3 in Hall and Mueller (2018) similarly

shows a clear kink in job offer acceptance rates at offered = reservation wages.
11. Roussille (2024) shows that the positive correlation between bids and asks conditional on

observables is consistent with models in which the ask salary is a signal of candidate quality.
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Figure 2: Empirical Patterns in Bid and Ask Salaries

(a) Fraction of Interview Requests Accepted (b) Kink at Bid = Ask

(c) Monetary Concerns Drive Rejections < Ask (d) Large Range of Bid Salaries for Same Job

(e) Bids are Anchored on the Ask
(f) Bids are Sticky in Expectation

Note: Panel (a) shows the distribution of the share of accepted interview requests for a given firm.
Panel (b) plots the average probability that a candidate accepts an interview request against the
ratio of the bid to ask salary. Panel (c) plots the average probability that a bid is rejected due to
insufficient compensation against the ratio of the bid to ask salary. Both Panel (b) and (c) have a
vertical grey dashed line at bid = ask. Panel (d) plots the relationship between the premium—the
difference between (log) bid and ask salary—and the within-job deviation of the (log) ask salary.
Panel (e) plots the cumulative density function of the ratio of bid to ask salary. Panel (f) plots the
relationship between the bid and the final offer sent to candidates.
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across workers. This motivates our test between these alternatives.

Bids are non-binding, but sticky. Firms’ bids reveal what they are willing to
pay candidates based solely on their profiles, before any direct interaction. A final
salary is later determined at the hiring stage. The data include indicator variables for
whether the firm extended a final offer and whether the candidate accepted it, and the
salary associated with accepted offers. Although bids are nonbinding, firms typically
make final offers close to their initial bids. Panel (f) of Figure 2 shows a highly linear
relationship between bid and final offer salaries, with a slope near one and an R2 of
0.75. About a third of all offers are identical to the bid, and almost three-quarters
are within 10% of the bid. We therefore adopt the simplifying assumption that the
expected final salary equals the bid for both candidates and firms, enabling us to
estimate our model using the richer data available at the interview stage.

3 Defining Firm Wage-Setting Conduct

To particularize our definition of conduct—how firms determine which workers to hire
and how much to pay them—to our setting, we first specify a general model of labor
supply and demand on Hired.com. Candidates i = 1, . . . , N post resume information
xi (which includes their ask ai) before interacting with firms.Firms j = 1, . . . , J have
observable characteristics zj. Firms browse active candidate profiles and decide, for
each candidate, whether to send a bid. We denote the bid salary of firm j on candidate
i by bij. Further, we let Bij equal one if j sends a bid to i, and zero otherwise. After
a candidate receives a bid, she decides whether to continue with an interview. After
the interview, the firm can make a final offer of employment to the candidate. The
(off-platform) outside option is denoted by j = 0, with Bi0 = 1. We denote analogous
variables at the final offer stage using a ◦ superscript.12 To specify a tractable model
of firm and candidate behavior, we make several simplifying assumptions which we
discuss below.

3.1 Labor Supply

Let Vij and Dij denote, respectively, the indirect utility candidate i associates with
the bid she receives from firm j and an indicator variable equal to one if she accepts
j’s bid. Candidate i will accept firm j’s bid if and only if the indirect utility associated

12. This means that we let B◦ij equal one if j makes a final offer to i and zero otherwise, and let
b◦ij denote j’s final salary offer to i. Further, B◦i0=1.
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with that bid exceeds that of her off-platform outside option:

Dij = Bij × 1[Vij ≥ Vi0], where Vij = vqj(bij, ξij | ai) for Qi = q. (1)

Vij is a firm-j-specific function of the bid salary bij and an idiosyncratic taste shock
ξij

iid∼ Fξ, conditional on i’s ask salary ai and her latent preference type Qi ∼ FQ. The
function vqj( ·, · | a) is continuous, strictly increasing in both arguments, and convex in
its second argument, and the distribution Fξ admits a continuous, log-concave density
fξ with support on the full real line.13 Allowing vqj(b, ξ | a) to vary by j introduces
vertical differentiation: even without taste shocks, a candidate may place different
values on bids at the same bid salary that come from different firms. This can occur if
there is systematic between-firm variation in the value of firms’ non-wage amenities–
for instance, if some firms offer more benefits than others. Allowing vqj(b, ξ | a) to vary
by preference type q introduces systematic horizontal differentiation: candidates who
belong to different preference types but are otherwise identical may value bids from
the same firm at the same bid salary differently. This captures systematic within-firm,
between-candidate variation in amenity valuations—for example, if men and women
place different weight on specific benefits or workplace attributes.

Given this notation, we formalize the following key assumptions on labor supply:

Assumption 1. (Private Information) Taste shocks ξij are private information:
they are known to workers, but not observed by firms, and are independent of candidate
observables xi: Fξ|x = Fξ. Preference types Qi are private information, but may be
partially-revealed by observables: the distribution FQ may depend upon xi: FQ|x 6= FQ.

This assumption restricts the information available to firms when setting bids.
Modeling idiosyncratic taste shocks as pure private information of workers is stan-
dard in labor economics and fits our context, since firms on Hired.com formulate
bids based solely on candidate profiles. Second, while our formulation of candidate
preferences does not explicitly allow for dependence upon observables other than the
ask, such dependence is implicitly captured through the preference types Qi, which
may themselves depend arbitrarily upon xi. If preferences are estimated allowing for
sufficient flexibility—by imposing few restrictions on the form of FQ and allowing
rich dependence of FQ|x on x—this assumption places few practical restrictions on
patterns of preference heterogeneity.

13. A large number of familiar distributions are log-concave (see Bagnoli and Bergstrom 2005),
and such an assumption is common. Requiring that vqj( ·, · | a) is convex in its second argument
assures that the distribution of Vij is log concave (conditional on ai, bij , and Qi).
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Assumption 2. (Role of the Ask Salary) The ask serves as a sufficient statistic
for the monetary value of the off-platform outside option: bi0 = ai. Further, the
function vqj(·, · | a) is twice continuously differentiable in its first argument, except at
the point b = a, where limb→a− ∂vqj(b, ξ | a)/∂b > limb→a+ ∂vqj(b, ξ | a)/∂b.

This assumption specifies that labor supply is reference-dependent in the ask, a
notion supported by stylized facts documented in Section 2.3. In particular, Figure
2b shows that candidates respond differently to bids above versus below their ask
salary. Additionally, for the large fraction of workers on the platform engaging in
on-the-job search, the assumption that their asks encode the monetary component of
their outside options can easily be justified if asks are a function of current salary.
Unemployed workers post lower asks even conditional on a rich set of covariates (the
average adjusted gap is $8,366), likely reflecting their worse outside options.

Finally, consider candidates’ final labor supply decisions. Let V ◦ij and D◦ij denote,
respectively, the indirect utility i associates with a final offer from j and an indicator
variable equal to one if she accepts that offer. Candidate i will accept firm j’s final
offer if and only if it delivers the highest indirect utility among her set of final offers:

D◦ij = B◦ij × 1[V ◦ij = V 1
i ], where V 1

i = max
k s.t. B◦

ik
=1
V ◦ik.

We make the following key assumption about candidates’ preferences over final offers:

Assumption 3. (Preference Stability) The preference parameters that govern
the indirect utility i associates with a bid from j also govern the indirect utility she
associates with a final offer from j. That is:

V ◦ij = vqj(b◦ij, ξ◦ij | ai) for Qi = q, with ξ◦ij ∼ Fξ.

This assumption specifies that while the monetary values and taste shocks asso-
ciated with final offers can be different from those associated with bids—b◦ 6= b and
ξ◦ 6= ξ in general—candidates rank firms’ final offers in the same way they rank their
initial bids. In particular, since we assume taste shocks over final offers have the same
marginal distribution Fξ as taste shocks over bids, the probability distributions over
workers’ rankings of final offers and their rankings of bids are the same if the ob-
served final salary offers and initial bids coincide (e.g. bij = b◦ij ∀j). This assumption
allows for correlation between taste shocks at the interview and final offer stages: ξ
and ξ◦ may be completely dependent (ξ = ξ◦), completely independent (ξ ⊥⊥ ξ◦), or
something in between, so long as their marginal distributions coincide.
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3.2 Labor Demand

For each candidate i it encounters, firm j formulates an optimal bid b∗ij to maximize
the expected option value of an interview request, given by the function πij(b). Firms
decide to bid on candidates if the maximized value of that function surpasses a firm-
specific interview cost threshold cj:

b∗ij = arg max
b

πij(b), and Bij = 1
[
πij(b∗ij) ≥ cj

]
. (2)

Realized bids are: bij = Bij × b∗ij, where bij = 0 if Bij = 0. The option value of
an interview request from firm j to candidate i depends upon both i’s labor supply
decision and i’s value to j. Let D◦ij(b) encode potential outcomes over i’s final labor
supply decision given j’s choice of bid salary bij = b:

D◦ij(b) = 1
[
Vij = V 1

i | bij = b
]
.

Denote the ex-post value firm j places on a match with candidate i by ε◦ij and the
realized final salary by b◦ij. Given these definitions, πij(b) can be written as:

πij(b) = Eij
[
D◦ij(bij)× (ε◦ij − b◦ij) | bij = b

]
,

where Eij[·] denotes an expectation taken over the information set Ωij of firm j when
it evaluates candidate i (and which may include firm-, candidate-, and market-level
variables).14

Given this notation, we can now formalize three key assumptions on labor demand:

Assumption 4. (Bid is Expected Final Salary) Conditional on Ωij and bij = b,
firms expect to pay their bids:

Eij
[
b◦ij | bij = b,D◦ij(b) = 1

]
= b

This assumption specifies that firms do not treat bids as cheap talk and credibly
expect to pay them if they make a final offer, ruling out strategic manipulation in
firms’ initial bids. While Assumption 4 is nonstandard, it is an accurate description
of firm behavior on the platform, as Figure 2 shows that final wage offers are highly

14. This objective function is nearly identical to that of a bidder in a standard first-price auction.
In such an auction, a bidder’s objective is to maximize her expected utility, where her bid affects
both the net payoff should she win (ε◦ij−b◦) and the probability that she wins (D◦ij(b)). An “auction”
on Hired.com differs from a standard first-price auction, however, because the firm that submits the
highest monetary bid is not guaranteed to be the candidate’s top-ranked choice.
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anchored on initial bids.15 Additionally, we adapt our conduct testing procedure to
the sample of final wage offers and find the same preferred model as in our main
analysis of bids.16

Assumption 5. (Mean Independence) Potential outcomes and ex-post values are
mean-independent, conditional on Ωij and bij = b:

Eij
[
D◦ij(b)× ε◦ij | bij = b

]
= Eij

[
D◦ij(b) | bij = b

]
× Eij

[
ε◦ij | bij = b

]
This assumption rules out the possibility that, conditional on observables, worker

i’s final labor supply decision is informative about ex-post match quality. Assumption
5 is very common in the labor literature—it is often assumed that ex-post values are
known ex-ante. A classic violation of this assumption is the “winner’s curse” in
competitive bidding models under uncertainty among agents with common values.
In such auctions, the winning bidder has the highest estimate of the value of the
object on auction, and learning that one has won an auction implies one has likely
overestimated the value of the object. Assumption 5 places our model more squarely
in the “private values” framework, in which each firm’s willingness to pay for the
object on auction (the worker) depends on its intrinsic valuation and not necessarily
a resale price. This assumption is plausible for several reasons. First, firms are likely
vertically differentiated by productivity (as in log-additive wage models with firm
fixed effects, e.g. Abowd, Kramarz, and Margolis 1999), leading to significant match-
specific productivity variation arising from firms’ idiosyncratic hiring needs. Second,
worker preference heterogeneity greatly attenuates the mechanical mean-reversion
channel of the winner’s curse. Finally, most candidates receive a relatively small
number of bids, reducing the importance of the winner’s curse (which increases in the
number of bidders).17

Assumption 6. (Exogenous Values) Ex-post values are not a function of the bid:

Eij
[
ε◦ij | bij = b

]
= Eij

[
ε◦ij
]

15. If this assumption did not hold, we would need a separate mapping between individual char-
acteristics and firms’ valuations, and an additional (set of) orthogonality condition(s)/exclusion
restriction(s) to identify that mapping.
16. Consistent with this result, Horton, Johari, and Kircher (2021) find that cheap talk about

willingness to pay workers on an online labor market for task work is informative for realized wage
outcomes. They rationalize this finding in the context of a model where an informative truth-telling
equilibrium exists if employer preferences are “sufficiently heterogeneous,” a plausible condition on
Hired.com.
17. It is possible to accommodate dependence between ε◦ij and D◦ij(b) conditional on b and xi by

following methods from the auction literature, for instance Athey and Haile (2002).

17



This assumption rules out efficiency wage mechanisms and other forms of depen-
dence between realized productivity and the wage.18 This assumption is particularly
reasonable when analyzing labor demand over individual workers or conditional on
granular worker observables, as in this paper. Further, most common forms of de-
pendence between wages and productivity are unlikely to operate in our setting. In
wage posting models, for instance, higher posted wages attract more applicants and
expand production, so the marginal revenue product of labor could rise or fall de-
pending on returns to scale and product-market competition. Neither force is relevant
on Hired.com, where firms bargain with individual workers: offering a higher wage
may increase the probability of hiring a particular candidate, but adding one soft-
ware engineer is unlikely to meaningfully affect a firm’s scale of production. A second
source of wage–productivity dependence—efficiency wages—is also implausible here,
as we study a market for software engineers whose effort can be readily measured
(see, for example, Emanuel, Harrington, and Pallais (2023), who document multiple
dimensions of programmer output at a large firm).19

Together, Assumptions 4, 5, and 6 imply:

πij(b) = Prij
(
D◦ij(b) = 1

)
︸ ︷︷ ︸

,Gij(b)

×
(
Eij[ε◦ij]︸ ︷︷ ︸

,εij

−b
)
. (3)

The first term, Gij(b), is j’s forecast of i’s labor supply decision, which we refer to
as the firm’s beliefs (or win probability).20 The second term is the difference between
j’s forecast of i’s ex-post match value, εij, and j’s bid. We refer to εij as the firm’s
valuation.

3.3 Firm Conduct in Equilibrium

Before providing a precise definition of firm wage-setting conduct, we first define a
notion of equilibrium. We adopt a Bayes-Nash equilibrium concept, in which players’
actions are best responses given their beliefs, which are themselves consistent with
equilibrium play. We explicitly define equilibrium such that beliefs are consistent
conditional on the information firms use to construct those beliefs:

18. This is a common assumption in models of labor market monopsony. For instance, Manning
(2011) discusses two canonical models of wage determination (bargaining and posting), imposing the
assumption that worker/firm productivity is fixed and independent of the wage (i.e. productivity p
is a constant, and not a function p(w)).
19. Practically, this assumption could be relaxed by modeling the dependence of ε on b.
20. We assume that firms’ beliefs are stationary, as in Backus and Lewis (2025). We defer consid-

eration of dynamics for future research.
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Definition 1 (Equilibrium). Given information sets {Ωij}N,Ji=1,j=1, a pure strategy
equilibrium is a set of tuples {bij(·), Gij(·)}N,Ji=1,j=1 satisfying:

(Optimality) bij(ε) is j’s best response for valuation ε given beliefs Gij(b):

bij(ε) =

arg maxb Gij(b)× (ε− b) if maxb Gij(b)× (ε− b) ≥ cj

0 otherwise.
(4)

(Consistency) Conditional on Ωij, firm j’s beliefs Gij(b) obey:

Gij(b) =
∫∫

Pr
(
vqj(b, ξij | ai) = V 1

i | V 1
i = v,Qi = q

)
× dFV,Q

(
v, q | Ωij

)
, (5)

where FV,Q(·, · | Ωij) is the population joint CDF of V 1
i , Qi conditional on Ωij.

To operationalize a notion of conduct in our setting, it is useful to partition each
information set as Ωij = {ωVij , ω

Q
ij}, where ωVij and ωQij encode the information j uses

to forecast V 1
i and Qi, respectively. We write the joint CDF as:

FV,Q
(
v, q | Ωij

)
= FV |Q

(
v | Qi = q, ωVij

)
︸ ︷︷ ︸

=Fω
V |Q

×FQ
(
q | ωQij

)
︸ ︷︷ ︸

=Fω
Q

. (6)

We can now provide a definition of firm wage-setting conduct in our setting:

Definition 2 (Conduct). Given the assumptions of Sections 3.1 and 3.2 and Def-
inition 1, a model of firm wage-setting conduct is defined by specifying the form of
firms’ beliefs, Gij(b):

• When markets are Imperfectly Competitive, firms’ beliefs are nondegener-
ate, and conduct is dictated by the contents of firms’ information sets Ωij =
{ωVij , ω

Q
ij}. We specify two alternatives for each component—firms are either:

– Not Predictive, with ωQij = ∅ such that F ω
Q = FQ; or Type Predictive,

with ωQij = xi such that F ω
Q = FQ|X ; and either:

– Monopsonistically Competitive, with {bij, Bij} /∈ ωVij such that ∂F ω
V |Q/∂b

= 0; or Oligopsonists, with {bij, Bij} ∈ ωVij such that ∂F ω
V |Q/∂b > 0.

• When markets are Perfectly Competitive, firms’ beliefs are degenerate: every
firm j believes that for each candidate i there exists a competitor whose valuation
is arbitrarily close to its own: Gij(b) ∝ 1[b ≥ εij].
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This notion of conduct does not capture every aspect of firms’ wage-setting be-
havior. However, our setting—in which firms can offer fully individualized wages—is
particularly well-suited for investigating how firms incorporate information about
worker preferences and market competition into their recruitment decisions. Ap-
pendix D illustrates, in a simple model, the implications of our conduct assumptions
and how they differ from those in studies that relate market structure to wages.

The first conduct assumption we test concerns ωQij , the information firms use
to forecast types. This test is motivated by our assumption that observables may
partially reveal candidates’ preference types to firms. Whether firms use such in-
formation to offer different wages to equally productive candidates has long been
debated in the labor literature. For instance, Burdett and Mortensen (1998) assume
that firms are not type-predictive, leading to efficiency losses that can be mitigated
through minimum-wage policies. On the other hand, Postel-Vinay and Robin (2002)
assume that firms are more than type-predictive: they are fully informed about the
workers’ types, allowing them to engage in first-degree price discrimination. More
recently, Flinn and Mullins (2021) analyze models in which firms differ in whether
they commit to posted wages (akin to non-predictive conduct) or negotiate wages
in response to outside offers (akin to type-predictive conduct). Type predictiveness
has important labor market implications. In our setting, firms would make more
offers and workers would capture a smaller share of match surplus when firms are
type-predictive relative to when they are not.21

The second conduct assumption we test concerns ωVij , and the nature of interac-
tions between vertically-differentiated firms. Under monopsonistic competition, firms
are differentiated but view themselves as atomistic: they ignore the effects of their
behavior on the composite value of candidates’ option sets. This assumption underlies
a number of studies, including Card et al. (2018) and Lamadon, Mogstad, and Setzler
(2022). In contrast, when firms are oligopsonists, they actively internalize how their
wage-setting choices shape the outside option of each candidate. Models of oligop-
sony, as in Berger, Herkenhoff, and Mongey (2022) and Jarosch, Nimczik, and Sorkin
(2024), therefore feature strategic interactions between firms. Another distinction, as
noted in Berger, Herkenhoff, and Mongey (2022), is that, under monopsonistic com-
petition, structural firm-specific labor supply elasticities are equal to reduced-form
elasticities. In contrast, under oligopsony, they depend upon both the firms’ bid and
the value of its amenities, in addition to competitors’ bids and amenities.

Finally, our model of perfectly competitive firms serves as a baseline against which

21. Our notion of “type-predictive” conduct is a form of third-degree price discrimination.
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we can compare more complicated models of conduct that incorporate additional
sources of wage dispersion beyond differences in the marginal revenue product of
labor. Under perfect competition, firms bid their valuations: bij(ε) = ε.

4 A Test of Firm Wage-Setting Conduct

4.1 Setup: Testing via an Exclusion Restriction

Our objective is to determine which model of conduct best describes the true data-
generating process.22 In this section, we describe the logic behind our testing proce-
dure. For expositional simplicity, we introduce two assumptions that we later relax
in implementation. First, we assume Gij(b) is differentiable everywhere, including at
b = a, with derivative gij(b). Second, we assume Bij = 1 for all i and j–firms bid on
all candidates.23 Under the first assumption, all bids satisfy the following first-order
condition with equality:

εij = bij + Gij(bij)
gij(bij)

. (7)

Letting ηij = bij · gij(bij)/Gij(bij) denote firm j’s perceived elasticity of candidate i’s
labor supply, this first-order condition can be written as the familiar markdown rule
bij = ηij

1+ηij
εij. Taking logs, the first-order condition can be expressed equivalently as:

log(εij) = log(bij) + µ(Ωij), where µ(Ωij) = log
(
1 + Gij(bij)

bij ·gij(bij)

)
= log

(
1 + 1

ηij

)
The function µ(·) encodes the (log) markdown of wages relative to firms’ valuations,
and depends on the content of firms’ information sets Ωij. Crucially, once firms’ wage-
setting conduct–here modeled as the content of Ωij–and the parameters governing
workers’ labor supply are known, then so is the markdown function: in a Bayes-Nash
Equilibrium, the bid fully reveals the firm’s valuation.

Of course, the true model of firm conduct, and hence the true wage markdown
µij, are unknown. We consider a series of possible conduct alternatives indexed
by m. Given estimates of the labor supply parameters, we construct model-implied
markdowns by evaluating µmij = µ(Ωm

ij ) and treat each µmij as data. If firms’ valuations
were known, then alternative models of conduct could be assessed by comparing true

22. Our procedure builds upon a long literature, beginning with Bresnahan (1982), on testing
price-setting conduct of firms in the product market.
23. Section 5.3 outlines the modifications we implement to accomodate nondifferentiability and

selection.
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markdowns µij = log(εij) − log(bij) to model-implied markdowns µmij . Nevo (2001)
follows this strategy, comparing cereal producers’ marginal costs from accounting
data (the analogue of εij) to model-implied marginal costs recovered under different
conduct assumptions. In our setting, εij is not observed so it cannot be compared to
a true benchmark. Instead, following Backus, Conlon, and Sinkinson (2021), we test
conduct using an exclusion restriction. Keeping in mind that xi and zj denote worker
and firm characteristics that enter firms’ valuations, let tij be a set of observable
variables in the firm’s information set that may shift the labor supply curve facing
firm j for worker i, but are excluded from valuations. Intuitively, tij collects “labor-
supply shifters”: conditional on (xi, zj), these variables affect firms’ perceptions of
how elastically worker i will supply labor to firm j, and thereby affect the markdown
µmij firms set, but they do not change the underlying valuation εij. Under the true
conduct model m∗, any variation in tij should therefore be fully absorbed by the
model-implied markdowns µm∗ij , so that the implied valuations

log(ε̂mij ) ≡ log(bij) + µmij

do not systematically vary with tij after conditioning on (xi, zj). In contrast, under
a misspecified model m 6= m∗, the mapping from (bij, xi, zj, tij) to µmij fails to absorb
the supply shifts, and the resulting model-implied valuations ε̂mij inherit spurious
dependence on tij. Our test therefore asks which model of conduct yields implied
valuations that most closely satisfy conditional mean-independence from tij given
(xi, zj). Formally:

Assumption 7. (Exclusion Restriction) A non-empty subset of observable vari-
ables are not determinants of firms’ valuations. In particular, (the log of) firms’
valuations can be decomposed as:

log(εij) = γ(xi, zj) + νij, with νij
iid∼ Fν(·) and E[νij | xi, zj, tij] = 0,

where γ(x, z) is the common component of demand for candidates with xi = x at
firms with zj = z, while νij is a firm-specific, idiosyncratic component of demand.

Assuming Bij = 1 for all i and j, this exclusion restriction also holds among the set
of observed bids.

Combining Assumption 7 and the firm’s first-order condition yields:

log(εij) = log(bij) + µij = γ(xi, zi) + νij. (8)
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Since the true markdown is not observed, we substitute µij with its counterpart under
an assumed model of conduct. For any model m (including the true one), write:

µmij = µm(xi, zj) + µ̃mij , where E[µ̃mij | xi, zj] = 0, but E[µ̃mij | xi, zj, tij] 6≡ 0.24

That is, model-implied markdowns can be written as the sum of a term, µm(xi, zj),
that co-varies systematically with observed determinants of labor demand and a resid-
ual, µ̃mij that may depend upon other elements of Ωij. Using this notation, one can
form a counterpart of Equation (8) for model m:

, log(bij)+µm
ij︷ ︸︸ ︷

log(εmij ) = γm(xi, zj)︸ ︷︷ ︸
= γ(xi,zj)+µm(xi,zj)−µ(xi,zj)

+ νmij︸ ︷︷ ︸
= νij+µ̃m

ij−µ̃ij

. (9)

This equation is a model-implied equivalent of Equation (8). However, while E[νmij |
xi, zj] = 0, the full conditional moment restriction of Assumption 7 need not hold
under a misspecified conduct assumption: E[νmij | xi, zj, tij] 6≡ 0.

Our test of conduct hinges on these exclusion restriction violations. Variables in tij
do not determine firms’ valuations but affect firms’ bids to the extent that they affect
markdowns, implying that Cov(log(bij), tij | xi, zj) 6= 0. If modelm corresponds to the
true model of conduct, however, adding model-implied markdowns µmij to observed
bids removes exactly the component that covaries with tij. The resulting model-
implied (log) valuations log(εmij ) = log(bij) + µmij satisfy:25

Cov(log(εmij ), tij | xi, zj) = Cov(νmij , tij | xi, zj)
= Cov(µ̃mij − µ̃ij, tij | xi, zj)︸ ︷︷ ︸

= 0 if µ̃m
ij =µ̃ij

,

and this covariance is equal to zero if the residual term matches its true counter-
part. In essence, our testing procedure ranks models by relative magnitude of their
exclusion restriction violations: for candidate models m1 and m2, if |Cov(ν̂m2

ij , tij)| >
|Cov(ν̂m1

ij , tij)|, we infer that m2 is further from the truth than m1.

24. Here, the symbol 6≡ should be read as “not necessarily equal to.”
25. The first equality follows from Equation (9), and the second follows from Assumption 7.
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4.2 Choice of Instrument

For the purpose of our testing procedure, we refer to elements of tij as instruments.
Berry and Haile (2014) establish that instruments that quasi-randomly shift demand
but do not shift the marginal cost function are necessary for conduct testing in product
markets. Backus, Conlon, and Sinkinson (2021) pioneered the implementation of tests
of conduct that formalize this logic: under true conduct assumptions, instruments
that quasi-randomly shift markups but not marginal costs should not be correlated
with recovered idiosyncratic cost shocks. Transposing this to our setting, we need
an instrument that quasi-randomly shifts labor supply but is excluded from firms’
valuations, such that it is uncorrelated with true demand residuals νij.26

We leverage quasi-random, high-frequency variation in potential on-platform tight-
ness generated by Hired.com’s rules, both between and within granular sub-markets,
as our primary instrument.27 In practice, we take advantage of the fact that candi-
date profiles go live in batches and remain searchable for only two weeks, generating
large fluctuations in the number of candidates, relative to firms, that are live on the
platform in a particular sub-market at any given time28 This batching and turnover
occurs at a two-week frequency, which is is too rapid to plausibly be driven by broader
labor market conditions. Changes in on-platform tightness are therefore plausibly or-
thogonal to candidates’ off-platform outside options. Combined with the absence of
observable job postings (current or past), it also implies that variation in candidate
quality across two-week periods is not endogenously determined by workers’ decisions
to go or stay on-platform, and so should not be related to firms’ valuations (condi-
tional on xi and zj). Instead, the instrument operates through workers’ on-platform
outside options: when there are fewer active candidates per active firm, each candi-
date faces more intense competition among firms and should receive more bids on the

26. Our setting differs in two key ways from that of Berry and Haile (2014). First, we use micro
data on individual choices, rather than market shares. Our granular data allows for identification
of labor supply parameters by conditioning on the information available to firms when they bid,
obviating the need for instruments for bids. Second, we analyze firms’ initial individualized bids
rather than uniform market prices. Our identification arguments therefore follow the empirical
auction literature (Guerre, Perrigne, and Vuong 2000; Backus and Lewis 2025) by assuming that
firms’ behavior must satisfy rational expectations rather than a market-clearing condition.
27. We call our instrument potential tightness because it measures changes in the abundance or

scarcity of candidates relative to the number of firms that may bid on those candidates during a
two-week period (whether or not firms actually decide to bid). We define the instrument within
occupation and experience bins (sub-markets) because those categories are the primary search fields
recruiters use when browsing candidates.
28. Candidates can follow up with interview requests they received after their profiles are no longer

live, but can only collect those requests during the two week period. Candidates may appeal to
administrators to extend the time their profile is live, but in practice only a small fraction do so.
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platform. This should in turn shift firms’ expectations about the competition for i
(we verify this empirically in Section 6.3).29

Formally, let vow denote the number of firms searching for experience and occupa-
tion o during two-week period w and let uow be the number of candidates with active
profiles with experience and occupation o during two-week period w. The prevailing
level of (inverse) potential on-platform tightness when j bids on i is: tij = uoiwij

/voiwij
.

Our instrument exogeneity assumption can be formalized as:

Assumption 8. (Instrument Exogeneity) Conditional on worker and firm ob-
servables xi and zj, the instrument tij (potential tightness) obeys:

a) (Exclusion Restriction) Potential tightness is not a determinant of the id-
iosyncratic component of labor demand, and

b) (Quasi-Random Assignment) Across ij pairs, the prevailing level of poten-
tial on-platform tightness is as-good-as randomly assigned,

and so tij is (conditionally) independent of the idiosyncratic component of demand:

tij ⊥⊥ νij | xi, zj. (10)

Firms’ information sets include tij (as well as uoiwij
and voiwij

) in addition to xi and
zj. Variation in tightness thereby drives variation in predicted markdowns that is
independent of the determinants of firms’ valuations. We provide suggestive, reduced-
form evidence in favor of Assumption 8 in Section 6.3.

4.3 The Rivers and Vuong (2002) Test

We implement the pairwise testing procedure of Rivers and Vuong (2002) to compare
models of wage-setting conduct. That is, we consider each pair of models in turn and
select the model that has the lowest correlation between the excluded variables and the
model’s residuals. To operationalize this test, we specify a scalar moment condition
in the residuals of fitted models and excluded instruments, as in Backus, Conlon,
and Sinkinson (2021). Because we estimate demand under each conduct assumption
via maximum likelihood to accommodate selection and non-differentiability, our test
is based on generalized residuals defined by the scores of the likelihood (Gourieroux
et al. 1987). In practice, this means that the demand residuals used in our test

29. Our use of potential competition as an instrument mirrors papers studying auctions with entry,
using exogenous variation in the potential number of entrants across auctions for identification
(Gentry and Li 2014).
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reflect not only the difference between the observed and expected values of bids (the
intensive margin), but also the relative likelihood that firms make those bids in the
first place (the extensive margin).

Formally, let Ψ denote the full vector of labor demand parameters smij`(Ψ) =
∂Lmij (Ψ)/∂ψ` denote the `-th component of the score vector for observation ij and
model m. The scores may be written as smij`(Ψ) = hmij (Ψ) · γ`(xi, zj), where hmij (Ψ)
is the generalized residual and γ`(xi, zj) = ∂γ(xi, zj)/∂ψ`. The maximum likelihood
estimate Ψ̂m is the vector that sets:

∑
ij:Bij=1

smij`(Ψ̂m) =
∑

ij:Bij=1
hmij (Ψ̂m) · γ`(xi, zj) = 0 ∀ `,

and so generalized residuals are constrained to be orthogonal to covariates.
The generalized residuals for each model can be computed straightforwardly by

taking the derivative of the individual likelihood contributions. We then compute the
covariance between the generalized residuals of model m and the excluded instrument
tij as our scalar moment/lack-of-fit measure:

Qm
s =

1
s

∑
ij:Bij=1

hmij (Ψ̂m) · tij

2

, (11)

where s = |{ij : Bij = 1}|.30 Under proper specification, the influence of the instru-
ment on markdowns is completely summarized by the inverse bidding function, and
so there should be zero correlation between the instrument and the generalized resid-
uals.31 Following Backus, Conlon, and Sinkinson (2021),32 we formulate a pairwise
statistic for testing between models m1 and m2 as an appropriately-scaled difference
between Qm1

s and Qm2
s , which Rivers and Vuong (2002) show to be asymptotically

30. Qms can also be motivated as a version of the score test statistic for testing against the null
hypothesis that the coefficient on tij in the labor demand equation is zero.
31. In Appendix H.2, we describe and implement an alternate testing procedure based on the Vuong

(1989) likelihood ratio test. While our version of the Rivers and Vuong (2002) test isolates only the
component of lack-of-fit directly correlated with the instrument, the alternate test combines all
sources of residual variation and can be thought of as an omnibus version of our lack-of-fit measure.
32. Backus, Conlon, and Sinkinson (2021) formulate their moment-based test statistic by interact-

ing residuals with an appropriate function of both the instrument and all other exogenous variables,
and connect their choice of that function to the literature on optimal instruments (Chamberlain
1987). In our setting, the formulation of such a function is complicated by selection and partial
identification issues. While not pursued here, the formulation of optimal instruments is a promising
avenue for future work.
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normal under the null hypothesis that m1 and m2 are asymptotically equivalent:

Tm1,m2
s = Qm1

s −Qm2
s

σ̂m1,m2
s /

√
s

D→ N (0, 1), (12)

where σ̂m1,m2
s is an estimate of the population variance of Qm1 − Qm2 . We compute

σ̂m1,m2
s /

√
s as the variance of Qm1

s − Qm2
s across bootstrap replications. Given a

significance level α with critical value cα, we reject the null hypothesis that m1 and
m2 are equivalent in favor of the alternative that m1 is asymptotically better than m2

when Tm1,m2
s < −cα, and vice versa if Tm1,m2

s > cα. If |Tm1,m2
s | ≤ cα, the test cannot

discriminate between the two models.

5 Identification and Estimation of Labor Supply and Demand

5.1 Labor Supply

Identification. By Assumption 1 of the labor supply model specified in Section
3.1, candidates’ types Qi and taste shocks ξij are private information, so firms decide
whether and how much to bid on the basis of xi alone. Further, observed character-
istics xi shift the distribution of types, but provide no additional information about
preferences conditional on those types. This implies two properties that establish
identification of preferences from our data on observed choices.

Denote candidate i’s offer set (the bids she receives) by Bi = {bij, Bij}Jj=0. The
first consequence of Assumption 1 is:

Property #1: (Conditional Independence) Candidate i’s offer set Bi is inde-
pendent of her type Qi conditional on her observable characteristics xi:

Pr(Bi | Qi = q, xi) = Pr(Bi | xi).

This further implies that the distribution of candidate types conditional on both Bi
and xi is equal to the distribution of types conditional on xi alone:

Pr(Qi = q | Bi, xi) = Pr(Bi | Qi = q, xi) Pr(Qi = q | xi)
Pr(Bi | xi)

= Pr(Qi = q | xi).

This property is implausible in administrative data, like linked employer-employee
records, due to the various selection mechanisms at play in the formation of equi-
librium matches. But in our setting, firms are required to make initial bids on the
basis of candidate profiles alone—the same information available to us—before they
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interact with candidates, and we observe both accepted and rejected offers.
Next, denote i’s sets of accepted and rejected bids by B1

i ⊆ Bi and B0
i = Bi \ B1

i ,
respectively. The labor supply model of Section 3.1 implies that every option in B1

i is
revealed-preferred to every option in B0

i : minj∈B1
i
Vij ≥ maxk∈B0

i
Vik. We refer to this

event as a partial ordering of i’s offer set Bi, which we denote by B1
i � B0

i . We are
now able to state the second consequence of Assumption 1 :

Property #2: (Exclusion Restriction) Conditional on a candidate’s latent type
Qi and Bi, the probability of observing any partial ordering is independent of xi:

Pr
(
B1
i � B0

i | Bi, Qi = q, xi
)

= Pr
(
B1
i � B0

i | Bi, Qi = q
)
, Pq

(
B1
i � B0

i

)
.

This property is a consequence of the fact that we have limited the dependence of
workers’ indirect utilities on their observable characteristics xi as flowing only through
the conditional distribution of their preference types given xi. The realism of this
property depends upon our ability to flexibly model the distribution of preference
types. To that end, we adopt the following assumption:

Assumption 9. (Finite Mixture Model) The support of Qi is restricted to the
integers 1, . . . , Q. Denote the conditional probability of type membership by:

Pr(Qi = q | xi) , αq(xi). (13)

Under this assumption, the probability of observing any partial ordering is described
by a finite mixture model over latent preference types.33 Modeling heterogeneity in
latent preference types in this way allows us to eschew potentially-restrictive func-
tional form restrictions on FQ. Candidates i and ` with Qi = Q` share a common
mean valuation of amenities at all firms. When estimating labor supply, we do not
place a priori restrictions on the number of types Q–rather, we estimate models al-
lowing for an increasing number of types, and use a likelihood ratio test to inform
our ultimate choice for Q.

Combining Assumption 9 and Properties 1 and 2, the log-integrated likelihood of

33. Mixtures of random utility models (RUMs) of this form have been studied in both econometrics
and computer science/machine learning. In particular, Soufiani et al. (2013) establish identifiability
of a finite-mixture-of-types RUM for which the idiosyncratic error components follow a log-concave
distribution, as assumed in our model. Soufiani et al. (2013) also provide simulation evidence that
estimation methods can correctly recover the true number of underlying types.
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i’s revealed partial ordering (given Bi and xi) is:

L(B1
i � B0

i | Bi, xi) = log
( Q∑
q=1

αq(xi)× Pq
(
B1
i � B0

i

))
.

Parameterization. In order to estimate preferences, we first specify a parameter-
ization of the labor supply model. We parameterize the indirect utility candidate i
associates with firm j’s bid as the sum of a monetary component and an amenity
component, where the amenity component can be further decomposed into the sum
of a type-specific mean valuation and the idiosyncratic taste shock ξij:

Vij = vqj(bij, ξij | ai) = uq(bij, ai)︸ ︷︷ ︸
monetary component

+
amenity component︷ ︸︸ ︷
Aqj + ξij for Qi = q.

Because Qi has finite support, we let Aj denote a Q× 1 vector of type-specific mean
amenity values at firm j with q-th component Aqj, and let Qi denote a Q× 1 vector
of type indicators with Qiq = 1 if Qi = q, such that AQij = Q′iAj. We allow the
monetary component of utility to depend on candidate type, and write it as:

uq(b, a) =
(
θq0 + θq1 · 1[b < a]

)
·
[

log(b)− log(a)
]

=

θq0 · log(b/a) if b ≥ a,(
θq0 + θq1

)
· log(b/a) if b < a,

and so uq(b, a) is continuous, but kinked, at b = a.34 We specify the conditional
distribution of types as a multinomial logit in xi with parameter β:

Pr(Qiq = 1 | xi) = αq(xi | β) = exp(x′iβq)∑Q
q′=1 exp(x′iβq′)

.

Finally, we specify that the distribution of taste shocks is extreme value type 1:
ξij

iid∼ EV1.

Estimation: First Step. We estimate labor supply parameters via a two-step
procedure. We first estimate type distribution parameters β and amenity values Aj

via maximum likelihood. Our strategy is based on a simple observation: if i accepts

34. Note that we have defined u(b, a) relative to the outside option: when b = a, log(b/a) =
log(1) = 0. When making utility comparisons between candidates, we add back the monetary
component associated with the outside option: uq(b, a) + θq0 · log(a).
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an offer from j and rejects an offer from k when bij = bik, then by revealed preference:

Q′i(Aj −Ak) ≥ ξik − ξij. (14)

Candidates often have several offers at the same bid, most often equal to their ask
or at round numbers. Therefore, we construct the connected set of firms using a
subset of bids S = {bij | bij > 0 and ∃ k 6= j s.t. bik = bij}. This subset contains
more than half of all bids. Making this restriction allows us to non-parametrically
difference out uq(b, a), thereby obviating the need for instruments for the wage since
identification of the Aqj does not rely on comparisons of offers with wages that may
differ endogenously. Plugging estimates Âqj in the second step allows us to control for
unobserved confound when we turn to the estimation of labor supply elasticities.35

To derive the probability of observing an arbitrary partial ordering of firms, it
is useful to work with the re-parameterization ρqj ∝ exp(Aqj), with

∑J
j=1 ρqj = 1.

Let σ(·) : {1, . . . , J} → {1, . . . , J} denote a complete ranking of all J alternatives. A
multinomial logit model of rankings (also known as “exploded logit”, or Plackett-Luce
(Plackett 1975; Luce 1959)) yields the following likelihood:

Pr(σ(·) | ρq) =
J∏
r=1

ρqσ−1(r)∑J
s=r ρqσ−1(s)

.

One complication is that we only observe candidates’ partial orderings of firms, not
their complete ranking.36 We circumvent this issue by implementing a novel numerical
approximation to the partial order likelihood that greatly reduces the computational
burden of estimation. In Appendix E, we show that:

P
(
B1
i � B0

i | ρq
)

=
∫ 1

0

∏
j∈B1

i

(
1− vρqj/

∑
k∈B0

i
ρqk

)
dv. (15)

This expression, and its derivatives, can be quickly and accurately approximated by

35. Using a two-step procedure allows us to sidestep the need for instruments for bid salaries, if
at the cost of the additional precision afforded by a one-step procedure that optimally combined
multiple sources of variation. In addition, our strategy allows us to isolate “clean” comparisons
without imposing additional assumptions necessary to justify instruments.
36. Following Allison and Christakis (1994), we could compute the probability of observing any

particular partial ordering by summing over all linear orders that are consistent with that par-
tial ordering. Even with a small number of alternatives, however, this strategy is computationally
intractable: the number of concordant linear orders grows exponentially in the number of alterna-
tives. Simulation methods that sample linear orders (e.g. Liu et al. 2019) are likely to be slow, and
introduce additional sources of noise.
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numerical quadrature.37

As in Sorkin (2018) and Avery et al. (2013), the estimated rank of firm j depends
not on j’s raw acceptance probability, but rather on the firms j was revealed preferred
to. Sorkin (2018) elegantly summarizes this property as a recursion: highly-ranked
firms are those that are revealed-preferred to other highly-ranked firms. Avery et
al. (2013) note that producing rankings in this way is robust to the strategic manip-
ulations of the units being ranked—a key property in our setting.38

Estimation: Second Step. Next, we estimate the remaining labor supply elasticity
and outside option parameters Θ = {θ0,θ1,A0} via GMM using the full set of bids
made by firms in the connected set. We first construct model-implied probabilities of
accepting an interview request as a function of Θ, plugging in β̂ and ρ̂ from the first
step. Letting H(x) = exp(x)

1+exp(x) denote the logistic CDF, the model-based estimate of
Pr(Dij = 1 | bij, xi) given parameters Θ is:

m(bij, xi | Θ) = ∑Q
q=1 αq(xi | β̂) ·H

(
(θq0 + θq1 · 1[bij < ai]) · log(bij/ai) + Âqj − Aq0

)
.

We compute the sample analogues of moment conditions of the form:

E
[
xi · (Dij −m(bij, xi | Θ))

]
= 0 and E

[
zj · (Dij −m(bij, xi | Θ))

]
= 0,

stacking them in the vector m̂(Θ). Θ is estimated by minimizing the GMM criterion:

Θ̂ = arg min
Θ

m̂(Θ)′W m̂(Θ)

for a symmetric, positive-semidefinite weighting matrix W .39

5.2 Constructing Firms’ Beliefs

Identification. Definition 1 specifies a general form for beliefs in equilibrium which
depends upon the probability that a firm’s bid ranks highest among all available op-
tions. Given our multinomial logit assumption (ξĳ

iid∼ EV1), that probability depends
on the inclusive value Λi. Let Λiq denote candidate i’s inclusive value conditional on

37. Appendix E provides details on the generalized EM-algorithm we use to estimate β and ρ.
38. While we do not present a formal proof of consistency here, parameter consistency and asymp-

totic normality of the MLE for similar models (pairwise comparisons with a single type) has been
established under sequences in which the number of items to be ranked (here, the number of firms
J) grows asymptotically, avoiding the usual incidental parameters problem (Simons and Yao 1999).
39. We setW =W (Θ) (Continuously-Updated GMM). Two-step GMM estimates are very similar.
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her preference type Qi = q, such that Λi = ∑Q
q=1QiqΛiq:

Λiq = log
( ∑
k:Bik=1

exp
(
uq(bik, ai) + Aqk

))

The probability that candidate i ranks firm j’s bid the highest conditional on i’s
preference type and the inclusive value takes the form:

Pr
(
Vij = V 1

i | Λi = λ,Qi = q, bij = b
)

= exp
(
uq(b, ai) + Aqj

)/
exp

(
λ
)
. (16)

Using this expression, we may re-write firms’ beliefs as:

Gij(b) =
Q∑
q=1

αq(ωQij) ·
∫ [

exp
(
uq(b, ai) + Aqj

)/
exp

(
λ
)]
dFΛ|Q

(
λ | Qi = q, ωVij

)
.

In the first-price auction setting, Gij(b) is nonparametrically identified by the ob-
served distribution of bids when bidders have rational expectations: because the seller
accepts the highest bid, the empirical CDF of winning bids can be used as an estimate
of Gij(b). This is the intuition of the approach in Guerre, Perrigne, and Vuong (2000)
(GPV). Our strategy extends the logic of GPV to a setting where Gij(b) depends
upon both the monetary and non-monetary components of the bid.

Estimation. We first construct inclusive values Λi using our labor supply parameter
estimates. We then use the empirical distribution of Λi to construct approxima-
tions to Gij(b) under each model of conduct. A given model of conduct is defined
as a combination of assumptions about 1) firms’ beliefs about the distribution of
Λiq = Λi | Qi = q and 2) firms’ beliefs about the distribution of preference types Qi.

Monopsonistic Competition vs. Oligopsony: Monopsonistically-competitive
firms do not account for the contribution of their own bid to the inclusive value
Λi—in other words, {bij, Bij} 6∈ ωVij . Under this assumption, firms’ beliefs are:

Gij(b) =
Q∑
q=1

αq(ωQij) ·
(
exp

(
uq(b, ai) + Aqj

)
× E

[
exp

(
− Λiq

)
| ωVij

])
. (17)

Since firms are assumed to have rational expectations conditional on ωVij , the quantity
E[exp(−Λiq) | ωVij ] is identified and can be estimated by constructing the sample con-
ditional expectation of exp(−Λiq) given the variables contained in ωVij (which include

32



xi, zj, and market-level covariates).40

Oligopsonistic firms accurately account for the contribution of their bid to the
inclusive value Λi. Under this assumption, the distribution of inclusive values con-
ditional on ωVij is given by Λiq | ωVij ∼ log(exp(uq(bij, ai) + Aqj) + exp(Λ−jiq )), where
Λ−jiq = log(∑k 6=j:Bik=1 exp(uq(bik, ai) + Aqk)) denotes i’s leave-j-out inclusive value.
Denote the probability distribution of Λ−jiq by FΛ−j

q
. Firms’ beliefs are then:

Gij(b) =
Q∑
q=1

αq(ωQij) ·
∫  exp

(
uq(b, ai) + Aqj

)
exp

(
uq(bij, ai) + Aqj) + exp

(
λ
) × dFΛ−j

q

(
λ | ωVij

) . (18)

Since firms’ beliefs are assumed to be consistent, FΛ−j
q

(
λ | ωVij

)
is identified and can be

estimated by constructing the empirical distribution of leave-one-out inclusive values
conditional on the variables in ωVij . These estimates can then be used to obtain a
numerical approximation to the integral over the distribution of leave-j-out inclusive
values.41

Type Predictive vs. Not Predictive: Type-predictive firms use observed profile
characteristics xi to forecast candidate types (ωQij = xi). In this case, we approxi-
mate firms’ beliefs using the estimated prior over types, αq(ωQij) = αq(xi | β̂). Not-
predictive firms do not use observed profile characteristics xi to forecast candidate
types (ωQij = ∅). In this case, we assume that firms weight type-specific win probabili-
ties by the average probability of type membership, αq(ωQij) = αq = 1

N

∑N
i=1 αq(xi | β̂).

We approximate to Gij(b) under all four combinations of these assumptions: {Monop-
sonistic Competition, Oligopsony} × {Type Predictive, Not Predictive}.

5.3 Labor Demand

Identification: Let Gm
ij (b) denote firms’ beliefs under model m. It is useful to return

to the case where Gm
ij (b) is differentiable everywhere, with derivative gmij (b), such that

40. When there are no differences in labor supply elasticites by preference type (θq0 = θ0 and θq1 =
θ1 for all q), the beliefs of monopsonistically-competitive firms are proportional to (b/ai)θ0+θ11[b<ai],
and markdowns are a constant fraction of the wage on either side of bij = ai: θ0

1+θ0
when bij > ai,

and θ0+θ1
1+θ0+θ1

when bij < ai. When bij = ai, µmij = ai/εij ∈
[
θ0

1+θ0
, θ0+θ1

1+θ0+θ1

]
.

41. Unlike monopsonistic competition, there is no simple closed-form expression for markdowns in
the oligopsony case when labor supply elasticities do not vary by type.
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all bids satisfy the following first-order condition with equality:

εmij (b) , b+
Gm
ij (b)

gmij (b) = exp
(
γm(xi, zj) + νmij

)
. (19)

The function εij(b) is the inverse bidding function: b = bij(εij(b)). Given a choice of
model m and labor supply parameters, the inverse bidding function is known, and
if the function εmij (·) is an injection a unique valuation εmij = εmij (bij) can be inferred
for every bid bij. Conditional moment restrictions of the form E[νmij | xi, zj] = 0 can
then be used to estimate γm(xi, zj) (e.g. by regressing εmij on flexible functions of xi
and zj). The parameters that govern γm(·, ·) are identified given sufficient variation
in both εmij and covariates xi, zj. This approach is taken by Backus, Conlon, and
Sinkinson (2021).

Our setting differs from this example in two important ways. First, Gm
ij (b) is not

differentiable at b = a, and so the first-order condition need not hold at that point.
Appendix F establishes that bidding strategies bmij (·) and option values πm∗ij (·) are nev-
ertheless continuous, monotonic functions in εij.42 Bids therefore partially identify
valuations, motivating our use of a Tobit-style likelihood: bij 6= ai maps to a unique
valuation, while bij = ai maps to an interval of possible valuations [εm−ij , εm+

ij ]. Sec-
ond, selection is a key feature of our setting: firms only bid on candidates for whom
πm∗ij (bmij (εij)) ≥ cj. The conditional moment restriction E[νmij | xi, zj] = 0 therefore
cannot be used to estimate the labor demand parameters, since E[νmij | xi, zj] > 0
when bij > 0.

Selection Correction and Estimation: We implement a selection correction using
the fact that for each m, bids reveal not only εij, but also the maximized value of
firms’ objective functions (see Appendix F). When bij 6= ai, we construct the implied
option value under model m, and when bij = ai, we construct an upper bound on
that quantity. We denote these values by π̂m∗ij , and use them to construct a consistent
estimate of each firm j’s interview cost threshold for each m by setting:

ĉmj = min
i:Bij=1

π̂m∗ij
a.s.→ cmj . (20)

The consistency of our estimate of cj depends upon the number of observations per

42. Log-concavity of Fξ and shape restrictions on u(b, a) imply that bmij (·) is strictly increasing in
εij outside an interval [εm−ij , εm+

ij ], and is equal to ai when εij is inside that interval, while πm∗ij (·) is
strictly increasing over all εij .
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firm growing without bound. Appendix G provides a proof of this result.
Using this estimate, we compute a lower bound on the valuation associated with

each bid, which we use to implement a selection correction. Because πm∗ij (·) is a
strictly increasing function, there is a unique lower-bound valuation εmij at which firm
j is indifferent between bidding and not bidding on candidate i. This lower bound
governs the selection into bidding: employer j must draw a valuation of at least εmij
to make a bid on candidate i, so that the distribution of valuations is censored from
below by εmij . We construct candidate-specific lower bounds by numerically inverting
the option value function: ε̂mij is the number that sets πm∗ij

(
ε̂mij
)

= ĉmj . We use these
lower bound estimates to construct the likelihood contribution of each bid:

Lmij (Ψm) = Pr
(
εij = εmij (bij) | εij ≥ ε̂mij , Ψm

)1[bij 6=ai]
× Pr

(
εij ∈ [εm−ij , εm+

ij ] | εij ≥ ε̂mij , Ψm
)1[bij=ai]

=
fε

(
εmij (bij); Ψm

)
1− Fε

(
ε̂mij ; Ψm

)
1[bij 6=ai]

×

Fε
(
εm+
ij ; Ψm

)
− Fε

(
max(εm−ij , ε̂mij ); Ψm

)
1− Fε

(
ε̂mij ; Ψm

)
1[bij=ai]

, (21)

where Ψm denotes the parameters for modelm, fε(·; Ψm) is the density of εij, Fε(·; Ψm)
is the CDF of εij, εmij (·) is the inverse bidding function for model m, and εm+

ij and εm−ij
are, respectively, the model-implied upper and lower bounds on εij when bij = ai.43

Parameterization: We make the following assumptions about the functional form
of γ(xi, zj) and the distribution of νij:

γ(xi, zj) = z′jΓxi =
∑
k

∑
`

γk`zjkxi` and νij
iid∼ N(0, σν).

where both xi and zj include a constant (such that z′jΓxi includes a constant, and all
main effects and interactions of xi and zj). For each model m, we estimate Γm and
σmν by maximizing the log-likelihood of the full set of bids in the analysis sample.

5.4 Discussion: Unobserved Off-Platform Search

A key advantage of our setting is that we observe workers’ offer menus, choices,
and firms’ individual bidding behavior. However, our data capture only on-platform
activity, raising the question of whether unobserved off-platform behavior could affect

43. Our approach—concentrating cj out of the likelihood by computing the minimum order
statistic—is similar to that of Donald and Paarsch 1993; 1996; 2002, who consider models in the
classic procurement auction setting. Given m, the cj are functions of only the labor supply pa-
rameters, which we treat as data. Because the cj do not depend upon any of the labor demand
parameters, our procedure yields a proper likelihood (unlike some of the cases they consider).
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these interactions and bias our estimates.
Workers likely search for jobs both on Hired.com and elsewhere, so unobserved

off-platform activity could affect their outside options (captured by Q′iA0 + ξi0). Our
first-step estimation, however, relies on within-person variation and remains valid as
long as adding outside options does not change workers’ on-platform ranking of firms.
Using these first-step estimates in the second step then accounts for potential selection
bias arising from correlation between wage offers and unobserved preferences.

Firms also recruit across multiple platforms. A key advantage of our setting is
that we observe firms’ individualized bids rather than posted wages—only 2.6% of
jobs offer identical bids to all candidates—making them unlikely to be influenced
by conditions on other platforms. Moreover, our estimation allows for unrestricted
job-level heterogeneity in interview thresholds, effectively including job fixed effects.
This ensures that comparisons are made within jobs, so any correlation between off-
platform search and job-specific demand is absorbed by the selection correction.

6 Results

6.1 Rejecting the Single Type Model of Labor Supply

We estimate several versions of the labor supply model to determine the number of
latent preference types Q and how type membership relates to candidate observables.
For each pair of models under each method of worker-types clustering, we compute
likelihood ratio (LR) statistics and χ2 p-value to test whether the model with q types
is equivalent to the model with q− 1 types. In addition to LR statistics, we compute
a more intuitive “goodness-of-fit” (GoF) statistic for each model. This statistic is
simply the fraction of pairwise revealed-preference comparisons that are concordant
with the estimated rankings:

GoF = N−1
pw

N∑
i=1

Q∑
q=1

∑
j∈B1

i

∑
k∈B0

i

(
αq(xi | β̂) · 1[Âqj ≥ Âqk]

)
,

where Npw is the total number of pairwise comparisons implied by revealed preference.
Table 1 reports the GoF statistics for several versions of our labor supply model.

Each row corresponds to a different number of types (one to four) and each numbered
group of columns reflects a different method used to assign type membership. The
first column allows men and women to rank firms differently, the second column splits
candidates between above- and below-median experience. The last column leverages
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Table 1: Candidate Preference Model Goodness-of-Fit

(1) (2) (3)
# Types Split on Gender Split on Experience Model-Based Clusters

(q) Log L. pq�q−1 GOF Log L. pq�q−1 GOF Log L. pq�q−1 GOF

1 -47,207 – 0.677 -47,207 – 0.677 -47,207 – 0.677
2 -46,441 0.999 0.685 -46,287 0.015 0.687 -45,244 <0.001 0.744
3 – – – – – – -44,298 0.001 0.772
4 – – – – – – -43,507 0.987 0.798

Number of: Firms: 1,649 Candidates: 14,344 Comparisons: 235,827

Note: This table reports maximized log likelihoods (Log L.), likelihood ratio test p-values (pq�q−1),
and goodness-of-fit (GOF) measures to adjudicate between labor supply models with different
numbers of types. Each numbered group of columns represents a different way to cluster candidates
into preference types. The GOF statistic is calculated as the fraction of pairwise comparisons
correctly predicted by the model, E

[(
Âj(Qi) > Âk(Qi)

)
×
(
j �i k

)]
, and p-values are calculated

against the null hypothesis that the model with q types is equivalent to the model with q−1 types.

all the observables we access for the candidates to define latent preference groupings.44

As benchmark, a model assigning random numbers for each Aqj would in expectation
yield a GoF statistic of 0.5. In contrast, as reported in the first row of Table 1,
the one-type model increases GoF over that baseline to 0.677. This relatively large
increase in explanatory power relative to the benchmark indicates significant vertical
differentiation of firms.

Column 1 of Table 1 assigns women and men to distinct preference types. This
adds virtually no explanatory power relative to a one-type model: the GoF statistic
increases imperceptibly (from 0.677 to 0.685), and the formal LR test fails to reject the
null that the two-type and one-type models are equivalent (p = 0.999). This finding
echoes Sorkin (2017), who also finds that estimated average preference orderings of
men and women are extremely similar. Splitting by experience in Column 2 does
only marginally better: while the LR test can reject the null that the two-type model
is equivalent to the one-type model (p = 0.015), the GoF statistic increases by just
1pp. By contrast, using all observables to define types (Column 3) performs markedly

44. To ensure comparability across grouping methods„ we keep the same sample of
bids/comparisons in each column. However, not every firm in the overall connected set is accepted
and rejected at least once by a candidate of each gender/experience level. When splitting by gender
or experience categories, we therefore assign weights αiq of 0.95 to each candidate’s own-group and
0.05 to the other group, which maintains overlap.
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better. With two types, the GoF statistic is 0.744, an almost 6pp larger increase than
for the gender or experience splits. Sequential LR tests between the one- and two-type
models and two- and three-type models both reject the null that the more complex
models are equivalent to the simpler models (p ≤ 0.001). However, we are unable to
reject the null hypothesis that the four-type alternative is equivalent to the three-type
model (p = 0.987). We therefore adopt the three-type version as our baseline. Panel
(a) of Figure A.2 provides additional evidence of the quality of the fit of the preferred
3-type model by plotting the relationship between the model-implied probabilities
that a given bid will be accepted against the empirical acceptance probability: the
two align extremely closely.

Plugging in the estimated rankings into our second-step GMM procedure yields
the following labor supply elasticity parameter estimates:

uq(bij, ai) = log
(
b/ai

)
×



3.60
(0.21)

+ 1.50
(0.25)

· 1[b < ai] if Qi = 1,

3.95
(0.19)

+ 1.62
(0.23)

· 1[b < ai] if Qi = 2,

4.19
(0.18)

+ 1.53
(0.22)

· 1[b < ai] if Qi = 3.

Our estimates are similar to others in the literature: Berger, Herkenhoff, and Mongey
(2022) report an estimate of 3.74, while Azar et al. (2020) report an estimate of 5.8.45

To validate the estimated rankings, we return to the reasons candidates give when
rejecting an interview request, described in Section 2.3. We divide these reasons into
two categories: personal reasons, that should correspond to a low draw of ξij, and
job-related reasons, that should correspond to a low value of Aqj. If the model fits
the data well, candidates should be more likely to reject highly-ranked firms for
personal reasons than job-related reasons, relative to lower-ranked firms. We test
this by computing , for each firm, the probability of being rejected for a job-related
reason and regressing this probability on the firm’s ordinal rank under the one-type
model (higher ranks are better). Figure A.3 shows a strongly significant negative
relationship, such that a one-percentile increase in estimated firm rank is associated
with a -0.090 (0.014) decrease in the probability of rejection for job-related reasons.
Finally, Figure A.4 leverages our access to firms’ listed benefits on their Hired.com
feature page to depict the relationship between listed benefits and estimated rankings
for a sub-sample of firms for which these benefits could be collected.46 Panel (a)

45. Note that, in contrast with other studies, our model allows for kinked labor supply and so we
estimate elasticities of 5.1-5.7 below the kink, i.e. when b < ai, and 3.6-4.2 above the kink.
46. Firms have profiles on Hired.com that candidates can consult and that contain a description of
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reports the distribution of the number of listed benefits in this sub-sample. Panel
(b) depicts a strong positive correlation between the number of listed benefits and a
firm’s estimated rank.

6.2 Significant Vertical and Horizontal Differentiation of Firms

Figure 3 illustrates the scale of vertical and horizontal firm differentiation implied by
our preferred model estimates. To gauge the importance of amenities relative to pay,
we compute a willingness-to-accept (WTA) statistic for every firm. The statistic is
equal to the fraction of a candidate’s ask that the model predicts a firm would need to
offer, on average, to make that candidate indifferent between accepting and rejecting
an interview request. We compute WTAqj as the number that solves:

(
θ̂q0 + θ̂q1 × 1[WTAqj < 1]

)
× log(WTAqj) + Âqj − Âq0 = 0.

where Aq0 is the q-th component of the vector of mean outside option values. Panel
(a) of Figure 3 plots the distribution of the mean WTA at each firm, averaging over
the population probabilities of each type:

WTAj =
3∑
q=1

αq ×WTAqj.

The average mean WTA is 0.985, indicating that candidates are willing to accept
1.5% less than their ask at the average firm. The standard deviation (S.D.) of mean
WTA across firms is 0.123 (12.3% of the ask), indicating substantial variability in
the amenity values candidates attach to firms. A nontrivial number of firms have
mean WTAs below 0.80, and an even larger number of them exceed 1.20. Panel (b)
of Figure 3 illustrates the systematic component of horizontal differentiation by plot-
ting the within-firm standard-deviation of WTAqj across preference types. The mean
within-firm S.D. of WTA is 0.140, suggesting that systematic horizontal differenti-
ation is comparable in magnitude to vertical differentiation. These estimates imply
considerable scope for firms to exercise market power in the ways we have specified:
substantial horizontal differentiation means that firms stand to gain significantly from
accurately predicting which candidates are in which preference group, while substan-
tial vertical differentiation implies that highly ranked firms, if acting strategically,
can afford to mark down wages significantly. Given the significant scope for firms to

the firm’s mission as well as the benefits they offer (e.g. health insurance, vacations, remote work)

39



set wages in response to preference heterogeneity, assessing firms’ true wage-setting
conduct is crucial. Finally, Panel (c) of Figure 3 plots estimated firm pay premia–
firm fixed effects from a regression of log bids on candidate characteristics interacted
with market conditions–against mean firm amenity values. Our results suggest that
augmenting differentials prevail: firms that pay more are also offer better amenities,
such that between-firm dispersion in amenities amplifies inequality. On average, a
1-S.D. increase in amenity values is associated with a 0.325 (0.030) S.D. increase in
the firm pay premium.

Which firm characteristics are associated with higher amenity values? To explore
this, we regress (standardized) estimates of Aqj on firm covariates zj. We report
these estimates in Panel A of Table B.3.47 Even with the relatively coarse covariates
available, a classification of groups emerges: baseline (group 2), risk-averse (group 3),
and risk-loving (group 1). Relative to baseline, members of group 3 place higher value
on larger, more established firms that pose less employment risk, while members of
group 1 place higher value on the smallest, more uncertain firms, such as startups.

How are worker characteristics related to type membership? To assess this, we
compute average posterior type probabilities for candidates with various observable
characteristics (our discussion of the EM algorithm in Appendix E covers the con-
struction of these probabilities). Panel B of Table B.3 reports these average posterior
type probabilities. We find that women are 13.3pp more likely to belong to the risk-
averse group and 9.4pp less likely to be in the risk-loving group than men. Candidates
with above-median experience are 16.3pp more likely to be in the risk-loving group
and 7.4pp less likely to be in the risk-averse group than those with below-median
experience. While there is significant residual variation in preferences conditional on
covariates, our estimates suggest that covariates are indeed predictive of preferences.

6.3 Reduced-Form Evidence

Before turning to our formal testing results, we provide reduced-form evidence on the
validity of our instrument and the nature of conduct on the platform.

In addition to our institutional knowledge, several observations corroborate that
on-platform market tightness is truly idiosyncratic. First, Panel (a) of Figure 4 shows
that the time-series variation in on-platform potential tightness — our excluded in-
strument tij — occurs at a frequency that is too high to plausibly be driven by broader
labor market conditions. Second, Assumption 8 requires that the instrument does not

47. These covariates capture only a small subset of the attributes candidates may value. Impor-
tantly, our “all-in” amenity estimates do not require observing the full set of firm characteristics.
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Figure 3: Firm Differentiation

(a) Vertical Differentiation (b) Horizontal Differentiation

(c) Correlation of Amenity Values and Firm
Pay Premia

Note: This figure illustrates the scale of vertical and horizontal differentiation of firms implied
by our preferred model estimates. Willingness to Accept (WTA) is the fraction of a candidate’s
ask salary that the model implies a firm must offer to make her indifferent between accepting or
rejecting an interview request, on average. Panel (a) plots the distribution of the mean WTA at
each firm, averaging over the population probabilities of each type. The vertical grey dashed line
indicates a WTA of 1, or Bid=Ask. Panel (b) illustrates the systematic component of horizontal
differentiation, plotting the distribution of within-firm, cross-type standard-deviations of WTA.
Panel (c) plots standardized firm pay premia (firm fixed effects from a regression of log bids on
candidate characteristics and market conditions) against standardized firm amenity values.

affect (the idiosyncratic component of) firm demand. While this cannot be directly
tested because labor demand is not observed, a lack of a correlation between the in-
strument and observable (correlates of) determinants of labor demand would bolster
this assumption. Because the ask salary encodes observed and unobservable worker
characteristics that are relevant for labor demand (Roussille 2024), we regress the av-
erage ask salary in each submarket-by-two-week cell on the instrument tij, including
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submarket fixed effects.48 Column (1) of Table 2 shows that there is no systematic
times-series relationship between the instrument and average ask salaries. It is still
possible that this lack of a relationship masks offsetting shifts in candidates’ skills,
and their asks given those skills. To speak to this, we construct a prediction of each
candidate’s ask via a random forest regression that uses the full set of worker ob-
servables, aside from the ask itself. Column (2) shows that there is no systematic
times-series relationship between the instrument and average predicted ask salaries.
Taken together, the results in columns (1) and (2) suggest that on-platform tightness
is orthogonal to economy-wide (or even tech-sector specific) labor market fluctuations.

Table 2: Reduced-Form IV Relationships

(1) (2) (3) (4) (5) (6)
Ask

Salary
Predicted

Ask
# Bids
Received

Ratio of
Bid to Ask

# Bids
Sent

Final Offer
Dummy

Instrument tij 137.4 -106.2 -0.332∗∗∗ 0.001 0.152∗∗∗ 0.063∗∗∗
(115.6) (81.28) (0.038) (0.001) (0.015) (0.006)

Dep. Var. Mean 143,748 143,740 2.386 0.988 1.651 0.181
Dep. Var. SD 35,539 31,607 2.350 0.120 1.362 0.394
Dep. Var. SD, within 17,770 13,886 1.892 0.119 – –

adj. R2 0.747 0.804 0.412 0.008 0.175 0.017
adj. R2, within <0.001 <0.001 0.105 <0.001 – –
N 5,140 5,140 5,140 5,140 143,861 16,307

Note: This table reports reduced-form relationships between labor market outcomes and the instrument
tij . Columns (1)-(4) report regressions of mean submarket-by-two-week-period outcomes on the instru-
ment, controlling for submarket fixed effects and clustering standard errors by two-week period. Column
(5) reports a regression of the total number of bids sent by a job in a particular submarket and two-week
period on the instrument, controlling for submarket, two-week period, and job fixed effects and cluster-
ing standard errors at the job level. Column (6) reports a bivariate regression of a binary variable equal
to one if a job makes a final offer on the instrument and robust standard errors. Each column reports the
mean and standard deviation of the dependent variable, as well as the overall adjusted R2 and number
of observations. Columns (1)-(4) also report the within-submarket standard deviation of the dependent
variable and adjusted R2.∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

We next investigate reduced-form relationships between the instrument and market-
level worker outcomes. In Columns (3) and (4) of Table 2, we regress the average
number of bids received per worker and the average bid-to-ask ratio on the instrument
across submarket-by-two-week cells, including submarket fixed effects. Column (3)
shows that, as the ratio of workers to firms increases, workers receive fewer bids, with

48. We define the instrument within occupation and experience bins (submarkets) because those
categories are the primary search fields recruiters use when browsing candidates.
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an implied elasticity of the number of bids to tightness of -0.2 (evaluated at the mean
level of tightness t̄ = 1.44). This is consistent with firms perceiving recruitment as
easier when competition for a given worker type declines, shifting Gij(·) up for any bid
b. Such a response does not align with the model of perfect competition specified in
Definition 2, where firms’ beliefs are degenerate and the number of bids per candidate
is insensitive to on-platform tightness. Rather, as models of imperfect competition
predict, similar candidates’ offer sets will depend on the number of other candidates
searching, holding constant the set of bidding firms. Column (4) shows that the ratio
of firms’ bids to candidates’ asks does not co-vary with on-platform tightness. This
pattern is inconsistent with oligopsony. Holding constant the set of workers, oligop-
sonistic models imply that firms will bid less when they face few competitors, and
more when they face many. In contrast, both the perfectly competitive model and
monopsonistic competition predict that (the monetary value of) firms’ bids are insen-
sitive to fluctuations in competitive conditions. Taken together, Columns (3) and (4)
of Table 2 suggest that only the monopsonistically competitive alternatives, which
predict that firms respond to changes in competition on the extensive margin (bid-
ding or not) but not on the intensive margin (how much to bid), are concordant with
instrument-induced changes in observed bidding behavior. While these correlations
provide some insights into the nature of competition, the change in the composition
of workers and firms over time may lead to omitted variables bias. This motivates our
formal testing procedure: by inverting firms’ first-order conditions under each con-
duct assumption, the predictions are made precise, worker- and firm-specific controls
can be incorporated, and job-specific selection corrections can be applied.

Columns (5) and (6) of Table 2 examine reduced-form relationships between the
instrument and job-level outcomes. In Column (5), we regress the total number of
bids sent by a job in a submarket and two-week period on the instrument, including
submarket, two-week period, and job fixed effects, and clustering standard errors
at the job level. As a within-firm analogue of Column (3), Column (5) shows that
firms bid on more candidates in submarkets where there are more candidates relative
to firms. This suggests that the relationship documented in Column (3) cannot be
fully explained by unobserved variation in the composition of labor demand within
submarkets over time. Finally, in column (6), we regress a dummy that equals one
if a job makes a final offer on the instrument. As on-platform tightness goes up, the
probability that a firm makes a final offer goes up as well. This is what we would
expect if the instrument shifts candidates’ labor supply but does not affect firms’
valuations. When the instrument increases, firms send more bids per job (Column
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Figure 4: Vuong Test

(a) Instrument Time-Series Variation

(b) First Stage (c) Visualizing the Vuong Test

Note: Panel (a) depicts an example of the time-series variation in the excluded instrument tij for the
sub-market of software engineers with 2-4 years of experience over three years of our sample period.
Panel (b) is a binned scatterplot depicting the “first stage” relationship between model-implied
inclusive values Λi and Λ−ji and tij , conditional zj , xi and two-week period dummies. Panel (c)
plots the relationship between generalized residuals and the tij for the non-predictive monopsonistic
competition and oligopsony models. Under proper specification, the correlation of the generalized
residuals and the excluded instrument should be zero (the dashed line). The larger the deviation
from zero, the greater the degree of misspecification.

(5)), and these bids are directed toward workers with weaker offer sets (Columns (3)
and (4)), making it more likely that at least one of these workers accepts an offer.
This is precisely the pattern we see in Column (6).

Finally, we illustrate the connection between the reduced-form relationships and
our formal testing procedure. In order to distinguish between conduct alternatives,
variation in the instrument must be associated with model-relevant quantities. Col-
umn (3) of Table 2 shows that as tij increases, candidates receive more bids, whereas
Columns (1) and (4) show that neither candidates’ asks nor the ratio of firms’ bids
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to asks covary with the instrument. Taken together, these results imply that higher
tij should correspond to lower model-implied inclusive values associated with candi-
dates’ offer sets. This intuition is borne out in Panel (b) of Figure 4, which shows
the “first-stage” relationship between model-implied inclusive values (Λi and Λ−ji )
and tij, conditional on firm and candidate covariates and two-week-period dummies
constructed using our labor supply estimates. Both full- and leave-one-out inclusive
values are strongly negatively correlated with tij, implying that instrument variation
is associated with substantial shifts in candidates’ labor supply. Appendix H.1 re-
ports the weak instrument diagnostics of Duarte et al. (2024), which confirm that our
procedure has power to distinguish between alternative models of conduct.

6.4 Testing Between Models of Conduct

We now describe the results of implementing our estimation and testing framework
for labor demand. Panel A of Table 3 reports the results of our primary testing
procedure. Columns (1)-(4) report pairwise test statistics for each pair of models we
estimated, using the moment-based versions of the Vuong test. Positive values imply
the row model is preferred to the column model. Under the null of model equivalence,
the test statistics are asymptotically normal with mean zero and unit variance. The
test statistics we report suggest that we can resoundingly reject the null hypothesis
of model equivalence in most cases.

The “Perfect Competition” model unambiguously performs worst among all mod-
els we test. Its extremely poor performance, which cannot rationalize a mass point
of bids exactly equal to ask, is unsurprising and perhaps best viewed as a valida-
tion of our testing procedure.49 Among the remaining alternatives, the two monop-
sonistic competition models outperform the two oligopsony models, with the not-
predictive monopsonistic competition alternative performing best. Following Duarte
et al. (2024), we construct model confidence set (MCS) p-values using the procedure
of Hansen, Lunde, and Nason (2011) and report them in Column (5) of Table 3. The
MCS is akin to a confidence interval over models that controls for the familywise error
rate: it is constructed to contain the model(s) of best fit with probability 1 − α. If
a model has an MCS p-value below α, it is rejected from the model confidence set.
The MCS p-values confirm our pairwise testing results: our estimated MCS contains

49. In the perfectly competitive model, firms bid their valuations. In order for the perfectly com-
petitive model to rationalize the large fraction of bids made at ask, it would have to be the case
that ask salaries are often perfect signals of productivity—an unrealistic assumption, given the large
excess variance in the ask conditional on the other relevant worker characteristics.
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Table 3: Non-Nested Model Comparison Tests, Initial Bids Sample

(1) (2) (3) (4) (5)

Model Monopsonistic Comp. Oligopsony MCS p-Value
Not Predictive Type Predictive Not Predictive Type Predictive

Panel A: Potential Tightness Instrument

Perfect Competition -64.94 -64.36 -55.89 -51.35 0.00
Monopsonistic, Not Predictive – 4.00 4.00 10.57 1.00
Monopsonistic, Type Predictive – 2.88 9.89 0.00
Oligopsony, Not Predictive – 16.81 0.01
Oligopsony, Type Predictive – 0.00

Panel B: BLP/Differentiation Instruments

Perfect Competition -40.80 -43.28 -12.94 -8.86 0.00
Monopsonistic, Not Predictive – 5.57 7.06 8.92 1.00
Monopsonistic, Type Predictive – 6.15 7.97 0.00
Oligopsony, Not Predictive – 7.76 0.00
Oligopsony, Type Predictive – 0.00

Note: Columns 1-4 of this table report test statistics from the Rivers and Vuong (2002) non-nested model comparison procedure.
Positive values imply the row model is preferred to the column model. Under the null of model equivalence, the test statistics
are asymptotically normal with mean zero and unit variance. Column 5 reports model confidence set p-values. Panel A re-
ports results using our primary instrument, relative market tightness, while Panel B reports results using BLP/Differentiation
instruments.

only the not-predictive monopsonoistic competition model.50

We visualize the results of the testing procedure in Panel (c) of Figure 4, which
plots generalized residuals for two alternative models against the excluded instrument.
Under proper specification, the generalized residuals should not be correlated with
the instrument: the further a model’s generalized residuals are from the x-axis, the
greater the degree of misspecification. The generalized residuals for the monopson-
sitic competition alternative are closely aligned with the x-axis, while the generalized
residuals for the oligopsony alternative are strongly negatively related to tightness.

Our tests therefore suggest that models of firm behavior in which firms ignore
strategic interactions in wage setting and do not tailor wage offers to candidates
based on predictable preference variation are closer approximations to firms’ true
bidding behavior than are models in which firms act strategically and tailor offers.

These testing results are robust to both our goodness-of-fit criterion and our choice
of instrument. Appendix H.2 reports testing results using the original Vuong (1989)
likelihood ratio test and yields similar conclusions. We also implement a version of the

50. To visually assess model fit, Panel (b) of Figure A.2 plots the relationship between observed
bids and the systematic component of valuations γj(xi) in our preferred model and, encouragingly,
find that the two are strongly and positively correlated.
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Rivers and Vuong (2002) testing procedure using an alternative set of instrumental
variables: the “differentiation instruments” proposed by Gandhi and Houde (2023).
Appendix H.3 provides more details on this alternative instrument. As shown in Panel
B of Table 3, it yields qualitatively identical model comparisons. In the following
analysis, we therefore adopt the not-predictive monopsonistic competition model.

Finally, one concern about our test of conduct is that it uses data on initial bids
rather than the final wage offers made by firms. It is possible that firms may neither
act strategically nor tailor offers at the initial bidding stage but engage in those
behaviors at later stages of the recruitment process. Additionally, while conduct at
the bidding stage determines the set of candidates the firm may ultimately match
with, the match itself is determined by the firm’s final offer decision. We therefore
implement our test using final offers, re-estimating labor demand under each model
of conduct on the set of accepted bids. The details of the implementation are in
Appendix H.4. Table 4 reports our testing results using final offers, with pairwise
test statistics reported in Columns (1)-(4) and MCS p-Values reported in Column
(5). Panel A of Table 4 shows results using the potential tightness instrument, while
Panel B shows results using BLP/Differentiation instruments. In both versions of the
test, the findings mirror our results from testing conduct using initial bids in Table
3: the not-predictive monopsonistic competition model outperforms all alternatives.

While it is natural to test firm conduct using final offers, several drawbacks mo-
tivate our reliance on initial bids in the main testing specification. The primary
drawback is that final offers are made after interviews„ allowing both sides to update
valuations based on information we do not observe Firms may update their forecasts
of ε◦ij, and candidates may reveal the value of their outside options ξi0. Further, the
tight link between firms’ initial bids and final offers suggests that firm conduct is
similar at both stages. Consistent with this, the model selected by our main test is
the best description of both the bidding and the final offer stage. This interpretation
aligns with Horton, Johari, and Kircher (2021), who show that cheap talk signals are
informative for realized wage outcomes in an online market for task work.

6.5 Comparing Demand Estimates

Our preferred model of conduct is the simplest of the four imperfect competition
alternatives we specified. How much do the conclusions of the more complicated
models of wage setting differ from those of the preferred model? To answer this
question, we report comparisons between pairs of models of increasing complexity,
adding one conduct assumption at a time. First, we compare the preferred model to
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Table 4: Non-Nested Model Comparison Tests, Final Offer Sample

(1) (2) (3) (4) (5)

Model Monopsonistic Comp. Oligopsony MCS p-Value
Not Predictive Type Predictive Not Predictive Type Predictive

Panel A: Potential Tightness Instrument

Perfect Competition -16.77 -1.83 -8.79 4.65 0.00
Monopsonistic, Not Predictive – 14.10 15.06 7.95 1.00
Monopsonistic, Type Predictive – -4.73 4.83 0.00
Oligopsony, Not Predictive – 5.57 0.00
Oligopsony, Type Predictive – 0.00

Panel B: BLP/Differentiation Instruments

Perfect Competition -28.02 1.13 -11.09 23.03 0.00
Monopsonistic, Not Predictive – 24.86 26.00 26.51 1.00
Monopsonistic, Type Predictive – -8.72 22.81 0.00
Oligopsony, Not Predictive – 24.10 0.00
Oligopsony, Type Predictive – 0.00

Note: Columns 1-4 of this table report test statistics from the Rivers and Vuong (2002) non-nested model comparison proce-
dure implemented on the sample of final offers. Positive values imply the row model is preferred to the column model. Under
the null of model equivalence, the test statistics are asymptotically normal with mean zero and unit variance. Column 5 reports
model confidence set p-values. Panel A reports results using our primary instrument, relative market tightness, while Panel B
reports results using BLP/Differentiation instruments.

the oligopsony model, maintaining the assumption that firms are not type-predictive.
Then, we compare the not-predictive oligopsony model to its type-predictive version.

Assuming firms are not type predictive, Panel (a) of Figure 5 compares the distri-
butions of predicted markdowns under monopsonistic competition and oligopsony. We
compute markdowns as the difference between the model-implied firm valuation and
the observed bid: εmij − bij.51 The two alternatives predict markedly different mark-
down distributions. First, under the preferred, monopsonistic model, the average
predicted markdown is $31,640 (or 19.5% of productivity). In contrast, under oligop-
sony, predicted markdowns are uniformly larger: the mean model-implied markdown
is $44,491 (or 26.6% of productivity, roughly 36% larger than under monopsonistic
competition). Second, the distribution of markdowns under oligopsony is significantly
more variable, with a standard deviation of $13,265, vs $6,976 under monopsonistic
competition. Third, the distribution of markdowns is relatively symmetric under
monopsonistic competition: its mean and median are separated by less than $50, and
its skewness is just 0.35. In contrast, the distribution of markdowns under oligop-
sony is highly skewed: its mean is $2,405 larger than its median, and its skewness is

51. In cases where the implied valuation is not point identified (the bid is equal to ask), we take
the midpoint of the model-implied range of valuations: (εm+

ij + εm−ij )/2− bij .

48



Figure 5: Contrasting labor market implications across models

(a) Predicted Markdowns (b) Between-firm productivity variation

(c) Between-firm markdown variation (d) Within-firm markdown variation

Note: Panel (a) plots the distribution of model-implied markdowns under the (not type-predictive)
monopsonistic competition and oligopsony models. Panels (b) and (c) consider between-firm vari-
ation. Panel (b) plots firm components of model-implied productivity for the preferred model and
the not-predictive oligopsony model against the standardized mean firm amenity value. Panel (c)
plots firm components of model-implied markdowns against mean firm amenity values, for the pre-
ferred model and the not-predictive oligopsony model. Panel (d) plots de-meaned model-implied
markdowns on the predictable component of horizontal preference variation, for the not-predictive
and predictive oligopsony models.

1.8. The two sets of markdowns are positively correlated but the correlation is far
from one, at 0.25. These large contrasts highlight why understanding firm conduct
matters: different assumptions about the presence of strategic interactions lead to
strikingly different conclusions about the size of markdowns.

Monopsonistic competition and oligopsony yield diverging implications not only
for the marginal distribution of markdowns, but also for the joint distribution of
markdowns and productivity across firms. Panel (b) of Figure 5 plots firm components
of model-implied productivity against standardized mean firm amenity values. In
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both models, the relationship between amenities and productivity is positive: firms
with relatively better amenities are more productive. But the slope of the relationship
is over three times larger under oligopsony than under monopsonistic competition.
This leads to large differences in implied productivity dispersion across firms: in the
preferred model, firms with the best amenities (+2σ) are 3.4% more productive than
firms with the worst amenities (−2σ). Under oligopsony, that difference is 10.6%.

What drives the large differences between the two models? Oligopsonistic firms
internalize firm-specific labor supply elasticities that depend upon their amenities,
such that firms with better amenities should mark wages down more. Monopsonisti-
cally competitive firms internalize upward-sloping firm-specific labor supply curves,
the elasticities of which do not depend upon their amenities. Panel (c) of Figure
5 illustrates this empirically by reporting binned scatterplots of de-meaned model-
implied markdowns against mean firm amenity values for the two models. Under
oligopsony, firms with the best amenities mark down wages by 7.4pp more than firms
with the worst amenities. Under monopsonistic competition, there is essentially no
room for firms to set different markdowns, and so the relationship is flat.

Next, we add another layer of complexity to wage setting: allowing firms to be
type-predictive. Panel (d) of Figure 5 reports binned scatterplots of de-meaned model-
implied markdowns on the predictable component of horizontal preference variation
for the not-predictive and predictive oligopsony models. While the not-predictive
model allows for systematic variation in markdowns between firms, it does not allow
for systematic variation in markdowns within firms across candidates. This yields a
flat relationship between markdowns and predictable horizontal preference variation.
In contrast, the type-predictive alternative allows firms to optimally use the infor-
mation about preferences revealed by observable candidate characteristics to mark
down wages. This means that candidates who value a given firm’s amenities rela-
tively more would be offered lower wages. Our estimates imply that the wage offers
a type-predictive firm makes to workers who value its amenities the most are marked
down 3.0pp more than the offers it makes to workers who value them the least.

The models also yield differing conclusions about labor demand and the sources
of gender gaps. Roussille (2024) documents a large gender gap in ask salaries. Under
monopsony, the average elasticity of εij with respect to the ask is 0.91, with small and
statistically insignificant differences in firms’ valuations of men and women (-0.44%
(0.29%)). Under oligopsony, the average elasticity of εij with respect to the ask is 0.80,
with a large and significant gender gap in firms’ valuations (-0.76% (0.27%)). Under
monopsony, 7.4% of the gender gap in εij is accounted for by differences in firms’
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perceptions of productivity between men and women (conditional on ask). Under
oligopsony, that share doubles to 14.4%. Appendix I presents further comparisons of
estimated labor demand parameters.

In a final exercise, we consider implications of our findings for gender gaps in
welfare. There exists a large gender gap in the number and average monetary value
of bids, which maps into a large average gap in welfare as measured by the inclusive
values of candidates’ interview offer sets. These gaps are primarily driven by gender
differences in the monetary value of bids received, but a nontrivial share of the gap
can be attributed to the fact that women receive bids from firms with less attractive
amenities than men. We conduct counterfactual simulations to quantify the impact
of imperfect competition on welfare and gender gaps. Relative to a “price taking”
baseline, firms make significantly fewer offers with lower average wages under the pre-
ferred model. Relative to the preferred model, however, the average value of bids, the
total number of bids, and welfare are significantly lower in simulated equilibria with
strategic interactions. Although a significant gender gap exists under price taking,
relative gender gaps are larger under imperfect competition and increase further when
firms are assumed to be type-predictive. Finally, we find that blinding employers to
the gender of candidates generates only a modest reduction in gender gaps under the
preferred model of conduct, but both the magnitude and direction of this effect vary
across alternative conduct scenarios.. Appendix J presents these decompositions and
counterfactual exercises in greater detail.

7 Conclusion

This paper provides direct evidence about the nature of firms’ conduct in a high-
wage labor market. We develop a testing procedure to adjudicate between many non-
nested models of conduct in the labor market. We focus on two sets of alternatives
relevant to ongoing debates in the labor literature: first, whether firms compete
strategically (Berger, Herkenhoff, and Mongey 2022; Jarosch, Nimczik, and Sorkin
2024), and second, whether firms tailor wage offers to workers’ outside options (Postel-
Vinay and Robin 2002; Jäger et al. 2024; Flinn and Mullins 2021). Applying our
testing procedure to data from a large online job-search platform in the tech sector,
we find evidence against strategic interactions in wage setting on this platform, as
well as against the tailoring of offers to workers of different types. Importantly,
we find that incorrect conduct assumptions can lead to substantial biases: in our
preferred model, wages are marked down by 19.5% on average, and markdowns do
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not vary systematically between firms or across workers at the same firm. Adopting
alternate assumptions in which firms interact strategically in wage setting leads to
average implied markdowns of 26.6%, which vary substantially between firms. Further
assuming that firms internalize predictable horizontal variation in preferences implies
significant additional markdown heterogeneity across workers. Our results suggest
that both assumptions are inconsistent with the observed behavior of firms.

The a priori unusual ingredient for our test of conduct is the ability to observe (or
recover) workers’ choice sets and their preferences over those sets. While Hired.com
is unique in making workers’ on-platform choice sets explicit, similar information
can be backed out on most online platforms, which often collect detailed data on
job availability during a worker’s search, search filters (e.g. location, job title) used,
clicks on job ads, time spent on listings, applications submitted„ and interview or
offer outcomes.52 Recent wage transparency laws further enhance the observability of
salary negotiations online. This paper thus provides a blueprint for how to leverage
these novel data to test models of firm wage-setting conduct in the labor market.
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For Online Publication: Appendix

A Additional Figures

Figure A.1: Static Recruitment

Note: This figure plots the cumulative density function
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Figure A.2: Assessing Model Fit

(a) Model Fit: Labor Supply (b) Model Fit: Labor demand

Note: Panel (a) plots the relationship between the empirical acceptance probability of a bid and
the model-implied probabilities that the bid will be accepted. Panel (b) plots the relationship
between observed bids and the systematic component of valuations exp(z′jΓxi) in the preferred
model, controlling for the ask salary. Unconditionally, the slope of the relationship between bids
and the observed component of valuations is 0.83.

Figure A.3: Interview Rejection Reasons as a Function of Firm Rankings

Note: This figure plots the probability that a firm was rejected for a non-compensation-related reason
as a function of firms’ ordinal rankings (where higher ranks are better). For a sub-sample (57%)
of rejected bids, candidates opted to provide a justification. They can choose from justifications
such as “insufficient compensation” or “company culture”. The latter is the justification we label as
“bad company fit”. We plot the probability of rejection due to bad company fit against estimated
rankings from the single-type model.
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Figure A.4: Benefits Listed by Firms

(a) Distribution of number of listed Benefits
(b) Relationship between listed benefits

and rank

Note: This figure displays the distribution of benefits listed by firms in the subset of ranked firms for
which information on benefits is available. Panel (a) plots the density of the number of listed benefits
per firm. The bar “20+” includes numbers of listed benefits greater than 20 up to a maximum of
53. The mean number of benefits is 10.71 (S.D. 9.45), while the median is 7. Panel (b) illustrates
the relationship between firm ranking and the number of listed benefits. On average an additional
benefit increases the firm’s ranking by 1 centile.
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B Additional Tables

Table B.1: Candidate Profile Fields (Aside from the Ask Salary)

Resume characteristic Variable type Levels/description

What type of position do
you currently have? (job
title)

Categorical variable -
drop down menu - sin-
gle entry - mandatory

• Software Engineering • Engineer-
ing management • Design • Data
Analytics • Developer Operations

• Quality Assurance • Information
Technology • Project management

• Product management
Total Position experience
(in years)

Categorical variable -
drop down menu - sin-
gle entry - mandatory

• 0-2 years • 2-4 years • 4-6 years
• 6-10 years • 10-15 years • 15+
years

Skills : Rank your top 5
languages & skills

Categorical variable -
drop down menu -
multiple (up to 5 en-
tries, at least 1)

Choice from many categories, in-
cluding: • javascript • python

• sql • c • nodejs • ruby • css
• java • html • machine learning
• data analysis • design • lead-
ership • project management. All
CS skills that are cited by more than
0.05% of the sample are included as
dummies in the regression.

Where do you live?53 Categorical variable -
drop down menu - sin-
gle entry - mandatory

• San Francisco • Los Angeles
• San Diego • Seattle • Denver
• Austin • Houston • Chicago
• Boston • Washington D.C. • New
York

Where do you want to
work?

Categorical variable
- drop down menu
- multiple entry -
mandatory

• San Francisco • Los Angeles
• San Diego • Seattle • Denver
• Austin • Houston • Chicago
• Boston • Washington D.C. • New
York

Are you interested in work-
ing remotely?

Categorical variable -
drop down menu - sin-
gle entry - mandatory

• Yes • No • Remote Only

What type of employment
are you seeking?

Categorical variable -
drop down menu - sin-
gle entry - mandatory

• Full Time Only • Prefers Full
Time • Full Time Only • Both
equally • Prefers Contract • Con-
tract Only

53. Our analysis focuses on jobs in the San Francisco bay area. The vast majority of candidates
contacted by these jobs either live or wish to live in the San Francisco bay area, although not all do.
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Preferred company size Categorical variable -
drop down menu -
multiple entries - op-
tional

• 1-15 • 16-50 • 51-200 • 201-500
• 500+

Preferred industry Categorical variable -
drop down menu -
multiple entries - op-
tional

Choice from many categories, in-
cluding: • bank, corporate finance,
& investing • analytics & research

• e-commerce • health care tech-
nology & nursing • social network-
ing • hardware, internet of things,
& electronics • information sys-
tems • education • digital pay-
ments • digital communication

Preferred career path Categorical variable -
drop down menu -
multiple entries - op-
tional

• contributional role • manager

Preferred career goal Categorical variable -
drop down menu -
multiple entries - op-
tional

• leadership • great culture • men-
torship • new technologies • so-
cially conscious • large projects

Where are you in your job
search?

Categorical variable -
drop down menu - sin-
gle entry - mandatory

• not looking for new opportunities
/ just browsing • open to exploring
new opportunities • actively look-
ing for new opportunities • cur-
rently interviewing • have offers

Will you now or in the
future require sponsorship
for employment visa status
(e.g. H-1B Visa)?

categorical variable -
drop down menu - sin-
gle entry - optional

• Sponsorship Required • Not
Required

Firm history Manual entry of the
history of firms that
the candidate worked
at and when - optional

Following Roussille 2024, we con-
struct an indicator for whether a
candidate has ever worked at a
FAANG company (Facebook, Ama-
zon, Apple, Netflix, Google).

Number of people man-
aged in current job

Categorical variable -
drop down menu - sin-
gle entry - optional

• 1-5 • 6-10 • 11-20 • 20+
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Education Manual entry of ed-
ucational institution,
degree and year - op-
tional

• a categorical variable for high-
est degree achieved (high school,
Associate, Bachelor, Master, MBA,
PhD) • an indicator for whether
the candidate ever attended an Ivy+
school (following Roussille 2024 we
define Ivy+ schools by adding the
top 5 programs in engineering as
ranked by U.S. News to the list de-
fined in Chetty et al. (2020)) • an
indicator for whether the degree is
in computer science.

Additional variables

Total experience Continuous –

Number of jobs held Continuous –

Currently employed Binary • Yes • No

Number of days searching
for work

Continuous –
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Table B.3: Correlates of Amenity Values and Type Probabilities

(1) (2) (3) (4)

Panel A: Correlates of Firm Amenity Values

One-Type Model Three-Type Model

Âj Â1j Â2j Â3j

Year Founded 0.00153 0.000951 0.00846 -0.00805∗
(0.00394) (0.00165) (0.00436) (0.00315)

15-50 Employees 0.161∗ -0.237∗ 0.0743 0.153∗
(0.0742) (0.104) (0.0904) (0.0763)

50-500 Employees 0.474∗∗∗ -0.320∗∗ 0.218∗ 0.406∗∗∗
(0.0743) (0.100) (0.0875) (0.0738)

500+ Employees 1.144∗∗∗ -0.373∗∗∗ 0.481∗∗∗ 0.743∗∗∗
(0.118) (0.103) (0.103) (0.0819)

Finance -0.0610 -0.0678 0.0121 -0.0490
(0.0902) (0.0433) (0.0606) (0.0509)

Tech -0.188∗∗ -0.0342 -0.0716 -0.0135
(0.0635) (0.0456) (0.0500) (0.0417)

Health -0.102 0.0133 -0.0395 0.0305
(0.0953) (0.0637) (0.0682) (0.0892)

adj. R2 0.180 0.020 0.033 0.126
N 913 913 913 913

Panel B: Posterior Type Probabilities by Candidate Characteristics

% of Sample αi1 αi2 αi3

All Candidates 100.0 0.290 0.315 0.395
Male 81.5 0.307 0.323 0.370
Female 18.5 0.213 0.284 0.503
Low Experience 50.0 0.208 0.360 0.432
High Experience 50.0 0.371 0.271 0.358
College or Less 61.8 0.300 0.378 0.323
Grad. Degree 38.2 0.274 0.215 0.511

Note: Panel A reports regressions of standardized estimates of firm amenity values
by type, Âqj , on firm characteristics zj and a constant. The omitted category is 0-15
employees. Robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p <
0.001. Panel B reports average posterior type probabilities conditional on a number
of observable characteristics.
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C Benchmark connected set against administrative datasets

On the candidate side, we benchmark the size of our connected set to one administra-
tive data: the OEWS (Occupational Employment and Wage Statistics). The OEWS
is based on a survey of establishments conducted by the BLS (Bureau of Labor Statis-
tics), which covers about a third of all U.S. establishments each year. Hired.com’s
market share is non-negligible: according to OEWS MSA-level estimates, between
2016-2019, there are on average around 127,200 software engineers (SOC 15-1252 and
15-1253) and 7500 web developers (SOC 15-1254 and 15-1255) in the Bay Area (San
Francisco + San Jose MSAs). Our connected set contains 14,344 candidates over
three years, among whom 10,538 (8.3% of area total) indicated software engineer
occupations and 839 (11.3% of area total) indicated web developer occupations.

On the firm-side, we benchmark our connected set against the administrative
Census SUSB (Statistics of U.S. Businesses) dataset from 2018, which estimates the
numbers of firms by employment size, MSA, and industry. We use San Francisco
+ San Jose MSAs as a proxy for “Bay Area”. We find that our connected set con-
tains a substantial chunk of large tech/information firms in the Bay Area (and, to a
lesser but still sizable extent, finance and healthcare firms). Focusing on firms with
more than 500 employees, our connected set contains 113 tech/information firms, 23
finance firms (NAICS 52), and 16 healthcare firms (NAICS 62). This compares with
237 tech/information firms, 384 finance firms, and 199 healthcare firms in the San
Francisco MSA; and 140 tech/information firms, 163 finance firms, and 127 health-
care firms in the San Jose MSA. The numbers of firms in San Francisco and San Jose
MSAs overlap, although the precise extent of overlap is unclear.
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D Illustration of conceptual framework

The following simple model, adapted from Bhaskar, Manning, and To (2002), can
be used to illustrate the logic of our conduct testing procedure. In particular, the
model illustrates the role of preference heterogeneity, the implications of conduct
assumptions, and the logic of our estimation and testing framework. The message is
that different combinations of assumptions on competition and wage-setting flexibility
deliver different wage equations, which can then be used to infer conduct.

In this model, there are two firms j = −1,+1. These firms are located on either
end of a mile-long road, and have productivity MRPLj = ARPLj = γj. Workers’
homes lie along the road with location given be ξ, which is private information.
These locations are uniformly distributed: ξ ∼ Unif[0, 1]. The road has two sides (left
and right) for a given location ξ. Workers’ homes are on either on the left or right
side, recorded by v, which is public information observable to firms: v ⊥⊥ ξ, v =
{−1,+1} w.p. 1/2. Firms post wages (which may vary by v). Worker’s preferences
over firms depend upon the wage offered by each firm and commuting costs. The
latter are a function of the workers’ location along the road as well as whether the
worker will have to cross the road to get to work. Worker utilities are given by:

uv−1(ξ) = wv−1 − β
(
ξ + αv

)
; uv+1(ξ) = wv+1 − β

(
1− (ξ + αv)

)
.

Under these assumptions, type-v’s labor supply to firm j is:

Svj (wvj ;wv−j) = 1
2 +

wvj − wv−j
2β + α v j.

Labor demand is determined by profit maximization:

πj(w) = 1
2

+1∑
v=−1

(γj − wv)× Svj (wv; ŵv−j),

where the random variable ŵv−j encodes j’s knowledge of the competitive environ-
ment. Wages are determined by firms’ first-order conditions and a market clearing
constraint:

wvj = 1
2(ŵv−j + γj − β)− αβ v j, Svj (wvj ; ŵv−j) + Sv−j(wv−j; ŵvj ) = 1.

We next define conduct as assumptions about the content of ŵv−j and firms’ use
of v in wage setting. In the table below we map each conduct assumption with its
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corresponding, distinct, equilibrium wage (and hence wage markdown):

Conduct use v? Firm’s ŵv−j Equilibrium Wage(s) wvj

Perfect Comp. No — γj

Monopsonistic Not TP No w 3
4γj + 1

4γ−j − β

Monopsonistic TP Yes wv 3
4γj + 1

4γ−j − β
(
1 + αv j

)
Oligopsony Not TP No w−j

2
3γj + 1

3γ−j − β

Oligopsony TP Yes wv−j
2
3γj + 1

3γ−j − β
(
1 + 2

3αv j
)

Note: TP stands for Type-Predictive

How can we adjudicate between these models? Each model, which we index by
m, yields a wage equation of the form:

wvj = cmown · γj + cmother · γ−j − cvmj .

where cmown and cmother are coefficients governing the pass-through of own-firm and
other-firm productivity into wages, and where cvmj is a model-specific intercept. A
traditional approach in labor economics is to estimate the vector of these coefficientsĉ.
To do so, one might first construct proxies for firm productivity γj and identify
instruments that shift γj (and/or competitive environment). Then, one would regress
wvj on γj, γ−j, and concentration measures. To conduct inference, we might perform
a simple Wald test on the parameter cj, for instance: H0 : cj ≥ 1, Ha : cj < 1.
Our approach (which follows the New Empirical Industrial Organization tradition)
is to estimate γ̂, rather than ĉ. A particular conduct assumption m, in combination
with labor supply parameters estimated in a prior step, determines the coefficients
cm. Rather than searching for instruments for productivity, find instruments for
markdowns that are excluded from productivity. Then, regress wvj + cvmj on cmown and
cmother to recover γ̂mj ; for example, when firms do not use v in wage setting, we have:

γ̂m−1

γ̂m+1

 =
 cmown cmother

cmother cmown

−1 w−1 + cm−1

w+1 + cm+1


In order to adjudicate between different forms of conduct, we use the Vuong (1989)
and Rivers and Vuong (2002) tests, which compare lack of fit between alternatives.
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E EM algorithm details

Our strategy relies on the well known fact that the maximum of independent EV1

random variables is also distributed EV1: if Fξ(x) = exp(− exp(−x)) is the EV1

CDF, then Pr
(
maxk∈B0

i
log(ρqk) + ξik < v

)
= Fξ

(
v − log

(∑
k∈B0

i
ρqk
))
. Using this

observation and a simple change of variables argument, we can re-write the probability
of the partial ordering B1

i � B0
i , conditional on preference parameters ρq, as:

P
(
B1
i � B0

i | ρq
)

= Pr
(

min
j∈B1

i

log(ρqj) + ξij > max
k∈B0

i

log(ρqk) + ξik | ρq
)

=
∫ ∞
−∞

∏
j∈B1

i

(1− Fξ (v − log(ρqj)))× dFξ
(
v − log

(∑
k∈B0

i
ρqk
))

=
∫ ∞
−∞

∏
j∈B1

i

(
1− Fξ

(
v − log

(∑
k∈B0

i
ρqk
))ρqj/

∑
k∈B0

i
ρqk
)
× dFξ

(
v − log

(∑
k∈B0

i
ρqk
))

=
∫ 1

0

∏
j∈B1

i

(
1− uρqj/

∑
k∈B0

i
ρqk

)
du =

∫ 1

0

[∏
j∈B1

i
(1− zρqj ) · ρRiq · zρRiq−1

]
︸ ︷︷ ︸

=fi(ρq ,z)

dz.

The second line uses the independence of ξij and the distribution of maxk∈B0
i

log(ρqk)+
ξik, the third line uses the fact that Fξ(x− log(a)) = Fξ(x− log(b))a/b, and the fourth
line first substitutes u = Fξ(v − log(∑k∈B0

i
ρqk)), then substitutes z = u1/ρRiq , where

ρRiq = ∑
j∈B0

i
ρqj, and ARiq = log(ρRiq). This expression, and its derivatives, can be

quickly and accurately approximated by numerical quadrature.
We estimate β and ρ via a first-order EM algorithm (replacing full maximization

in the M step with a single gradient ascent update). Applying successive minoriza-
tions yields parameter updates that monotonically increase the likelihood (Böhn-
ing and Lindsay 1988; Wu and Lange 2010). It is useful to define the shorthand:
fi(ρq) =

∫ 1
0 fi(ρq, z)dz = P

(
B1
i � B0

i | ρq
)
, f (t)

iq = fi(ρ(t)
q ), giq(β) = αq(xi | β) =

exp(x′iβq)
/∑Q

q′=1 exp(x′iβq′), g
(t)
iq = giq(β(t)). Our algorithm proceeds as follows:

• Initialization: provide an initial guess of parameter values (β(0),ρ(0)).

• E Step: at iteration t, approximate the log integrated likelihood by:

E (t)(β,ρ) =
Q∑
q=1

α
(t)
iq log

(
giq(β) · fiq(ρq)

)
, where α

(t)
iq =

g
(t)
iq · f

(t)
iq∑Q

q′=1 g
(t)
iq′ · f

(t)
iq′

.

• M Step: Find β(t+1),ρ(t+1) by computing a single gradient ascent update.

We initialize our algorithm at 50 random starting values, and report the estimate that
yields the highest likelihood. We now detail computation of gradient ascent steps.
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Define E (t)
g (β) = ∑N

i=1
∑Q
q=1 α

(t)
iq · log(giq(β)), and E (t)

fq (ρq) = ∑N
i=1 α

(t)
iq · log(fi(ρq)),

such that: E (t)(β,ρ) = E (t)
g (β) +∑Q

q=1 E
(t)
fq (ρq). Since E (t) is separable in β and ρq, we

consider each part separately.
The first component is E (t)

g (β) = ∑N
i=1

∑Q
q=1 α

(t)
iq ·

(
x′iβq − log

(∑Q
q′=1 exp(x′iβq′)

))
.

Let α(t)
i =

[
α

(t)
i2 . . . α

(t)
iQ

]′
, g(t)

i =
[
g

(t)
i2 . . . g

(t)
iQ

]′
, and E (t)

g = E (t)
g (β(t)). Then the gradi-

ent is given by: ∇E (t)
g = ∑N

i=1

(
α

(t)
i −g

(t)
i

)
⊗xi, and the Hessian is given by: ∇2E (t)

g =
−∑N

i=1

(
diag(g(t)

i )− g(t)
i gi

(t)′
)
⊗ (xix′i). Our algorithm for β follows Böhning (1992).

For any Q− 1× 1 vector g, where the elements of g are nonnegative the sum of those
elements is less than or equal to 1, we have: diag(g)−gg′ ≤

[
IQ−1 −Q−11Q−11′Q−1

]
,

whereA ≤ B is the Loewner ordering: ifA ≤ B, thenB−A is positive semidefinite.
Define the matrixB0 = 1

2

[
IQ−1 −Q−11Q−11′Q−1

]
⊗(X ′X) , whereX = [x1 . . . xN ]′.

It is straightforward to show that ∇2E (t)
g ≥ −B0. Now, consider the second-order

Taylor approximation to E (t)
g (β) at β(t):

E (t)
g (β) ≈ E (t)

g (β(t)) + (β − β(t))′∇E (t)
g + (β − β(t))′∇2E (t)

g (β − β(t))
≥ E (t)

g (β(t)) + (β − β(t))′∇E (t)
g − (β − β(t))′B0(β − β(t)) = Ẽ (t)

g (β)

The second line is a quadratic lower bound approximation to E (t)
g (β). We set:

β(t+1) = arg max
β
Ẽ (t)
g (β) = β(t) +B−1

0 ∇E (t)
g = β(t) +B−1

0

(∑N
i=1

(
α

(t)
i − g

(t)
i

)
⊗ xi

)
.

The matrix B−1
0 = 2

[
IQ−1 + 1Q−11′Q−1

]
⊗(X ′X)−1 only needs to be computed once.

The second component is E (t)
fq (ρq) = ∑N

i=1 α
(t)
iq · log(fi(ρq)). For now, we consider

each term of the sum separately, and so we drop i and q subscripts. We have:
f(ρ) =

∫ 1
0 f(ρ, z)dz =

∫ 1
0

[∏
j∈B1 (1− zρj ) · ρ0 · zρ0−1

]
dz. It is easy to show that this

probability is invariant to positive scaling of the vector ρ: for any α > 0, f(αρ) =
f(ρ). We set α = 1/ρ(t)

R and re-write the expression for f(ρ) as:

f(ρ)
f(ρ(t)) =

∫ 1
0 f(ρ/ρ(t)

R , z)dz∫ 1
0 f(ρ(t)/ρ

(t)
R , z)dz

=
∫ 1

0

 f(ρ/ρ(t)
R , z)

f(ρ(t)/ρ
(t)
R , z)

 ·
 f(ρ(t)/ρ

(t)
R , z)∫ 1

0 f(ρ(t)/ρ
(t)
R , z

′)dz′


︸ ︷︷ ︸

=π(t)(z)

dz

Jensen’s inequality implies: log(f(ρ))− log(f(ρ(t))) ≥
∫ 1

0 log
(

f(ρ/ρ(t)
R ,z)

f(ρ(t)/ρ(t)
R ,z)

)
· π(t)(z)dz.

Letting H(t)
π = −

∫ 1
0 log(π(t)(z))π(t)(z)dz ≥ 0, the above inequality can be rewritten

as: log(f(ρ)) ≥
∫ 1
0 log

(
f(ρ/ρ(t)

R , z)
)
· π(t)(z)dz + H(t)

π , which is an equality when
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ρ = ρ(t), and is strict otherwise. We next analyze:

log
(
f(ρ/ρ(t)

R , z)
)

= ∑
j∈B1 log

(
1− zρj/ρ

(t)
R

)
+ log

(
ρR/ρ

(t)
R

)
+ (ρR/ρ(t)

R − 1) log(z).

Note that: log
(
ρR/ρ

(t)
R

)
≥ ∑k∈B0 log

(
ρk/ρ

(t)
k

)
·
(
ρ

(t)
k /ρ

(t)
R

)
, again by Jensen’s inequal-

ity. Letting H(t)
ρ = −∑k∈B0 log

(
ρ

(t)
k /ρ

(t)
R

)
·
(
ρ

(t)
k /ρ

(t)
R

)
≥ 0, the above inequality can

be rewritten as: log(ρR) ≥ ∑
k∈B0 log (ρk) ·

(
ρ

(t)
k /ρ

(t)
R

)
+ H(t)

ρ , where the inequality is
again an equality when ρ = ρ(t), and is strict otherwise. Substituting this expression
into the inequality above and lumping constant terms into the single term H(t) gives:

log(f(ρ))−H(t) ≥
∑
j∈B1

log
(

1− zρj/ρ
(t)
R

)
+
∑
k∈B0

1
ρ

(t)
R

[
log(ρk) · ρ(t)

k + ρk ·
∫ 1

0
log(z) π(t)(z) dz

]
= f̃ (t)(ρ).

The function f̃ (t)(ρ) is separable in the parameters ρ, and so its Hessian is diagonal.
To define the partial derivatives of f̃ (t)(ρ), it will be useful to work with the following
auxiliary functions: h(z, x) = log(z) · zx

1−zx , and h2(z, x) = log2(z) · zx

(1−zx)2 , and to
define: ρ̃(t)

j = ρ
(t)
j /ρ

(t)
R . We take derivatives with respect to Aj = log(ρj):

∇j f̃
(t) = ∂f̃ (t)

∂Aj

∣∣∣∣∣∣
ρ=ρ(t)

= 1
[
j ∈ B1

] (
−ρ̃(t)

j

∫ 1

0
h(z, ρ̃(t)

j )π(t)(z)dz
)

+ 1
[
j ∈ B0

] (
ρ̃

(t)
j + ρ̃

(t)
j

∫ 1

0
log(z)π(t)(z)dz

)

∇2
jj f̃

(t) = ∂2f̃ (t)

∂A2
j

∣∣∣∣∣∣
ρ=ρ(t)

= 1
[
j ∈ B1

] (
−ρ̃(t)

j

∫ 1

0
h(z, ρ̃(t)

j )π(t)(z)dz −
(
ρ̃

(t)
j

)2 ∫ 1

0
h2(z, ρ̃(t)

j )π(t)(z)dz
)

+ 1
[
j ∈ B0

] (
ρ̃

(t)
j

∫ 1

0
log(z)π(t)(z)dz

)

We construct a lower bound surrogate Ẽ (t)
fq (ρq) for the function E (t)

fq (ρq) by setting:
Ẽ (t)
fq (ρq) = ∑N

i=1 α
(t)
iq f̃i(ρq), ∇j Ẽ (t)

fq = ∑N
i=1 α

(t)
iq ∇j f̃

(t)
i and ∇2

jj Ẽ
(t)
fq = ∑N

i=1 α
(t)
iq ∇2

jj f̃
(t)
i ,

which are again defined with respect to Aq = log(ρq). Maximizing the second-order
Taylor series approximation to Ẽ (t)

fq (ρq) yields the following Newton-Raphson step:
A(t+1)
q = A(t)

q −
(
∇2Ẽ (t)

fq

)−1 (
∇Ẽ (t)

fq

)
. Because ∇2Ẽ (t)

fq is diagonal, this step takes a
(relatively) simple form. When reintroducing iq subscripts, we have: ρ̃(t)

ijq = ρ
(t)
jq /ρ

(t)
Riq

and π
(t)
iq (z) = fi(ρ̃(t)

ijq, z)
/∫ 1

0 fi(ρ̃
(t)
ijq, z

′)dz′. It will again be helpful to define addi-

tional shorthand: [h0
iq](t) = −

∫ 1
0 log(z)π(t)

iq (z)dz, [h1
ijq](t) = −

∫ 1
0 h(z, ρ̃(t)

ijq)π
(t)
iq (z)dz,

and [h2
ijq](t) =

∫ 1
0 h

2(z, ρ̃(t)
ijq)π

(t)
iq (z)dz. The gradient ascent update for a single Aqj is:

A
(t+1)
qj = A

(t)
qj +

∑N
i=1 α

(t)
iq ρ̃

(t)
ijq

(
1 (j ∈ B1) · [h1

ijq](t) + 1 (j ∈ B0) ·
(
1− [h0

iq](t)
))

∑N
i=1 α

(t)
iq ρ̃

(t)
ijq

(
1 (j ∈ B1) ·

(
ρ̃

(t)
ijq · [h2

ijq](t) − [h1
ijq](t)

)
+ 1 (j ∈ B0) · [h0

iq](t)
) .

Because the scale of ρq (level of Aq) is not identified, we renormalize the parameter
vector at each step such that ∑J

j=1 ρqj = 1.
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F Properties of bidding strategies

Log-concavity of Gm
ij (·) implies several properties of bidding functions. A function

f is log-concave if: f(λy + (1 − λ)x) ≥ f(y)λf(x)1−λ ∀x, y ∈ R, λ ∈ [0, 1]. Log-
concavity of f implies that F =

∫ x
−∞ f(u)du and 1−F = F are also log-concave, that

f/F is monotone decreasing, and that f/F is monotone increasing. A large num-
ber of common probability distributions admit log-concave densities, including the
normal, logistic, extreme value, and Laplace distributions. Log-concave probability
distributions are commonly used in models of search (Bagnoli and Bergstrom 2005).

Under each model (dropping m superscripts), we may generally write Gij(b) =∫
G̃ij(b, λ)dH(λ), where either G̃ij(b, λ) = exp(u(b, ai))/(exp(u(b, ai))+exp(λ)) under

oligopsony or G̃ij(b, λ) = exp(u(b, ai) − λ) under monopsonistic competition. In the
latter case, log concavity of Gij(b) follows directly from the fact that u(b, ai) is concave
(by assumption), since Gij(b) = exp(u(b, ai)) ×

∫
exp(−λ)dH(λ). Log concavity in

the former case can also be shown via differentiation of log(Gij(b)).
Let the function G+

ij(b) (with derivative g+
ij(b)) denote the right-hand side of the

Gij(b) function, which replaces θ0 + θ1 · 1[b < ai] with θ0. We similarly let G−ij(b)
denote the left-hand side function, which replaces θ0 + θ1 · 1[b < ai] with θ0 + θ1.
Clearly, Gij(b) = 1[b ≥ ai] · G+

ij(b) + 1[b < ai] · G−ij(b). Under the assumption that
both G+

ij(b) and G−ij(b) are log-concave, we have that the functions g+
ij(b)/G+

ij(b) and
g−ij(b)/G−ij(b) are both strictly decreasing functions of b. This implies that both the
left-hand and right-hand inverse bidding functions, ε−ij(b) = b + G−ij(b)/g−ij(b) and
ε+
ij(b) = b + G+

ij(b)/g+
ij(b) are monotone increasing functions of the bid. This in turn

implies that the left- and right-hand bidding functions, which we denote by b−ij(εij) and
b+
ij(εij) are also strictly increasing functions of εij. We may also define the left- and
right-hand indirect expected profit functions as π∗sij (εij) = Gs

ij(bsij(εij))2/gsij(bsij(εij))
for s ∈ {−,+}, which are both strictly increasing functions of εij. These results
establish the monotonicity of firm strategies and payoffs in their unobserved valuations
when firms bid on either side of the kink.

A necessary condition for the firm to bid at the kink is that the derivative of the
left-hand expected profit function is positive at the ask salary and the derivative of
the right-hand profit function is negative at the ask salary:

g−ij(ai)(εij − ai)−G−ij(ai) > 0 and g+
ij(ai)(εij − ai)−G+

ij(ai) < 0.

We assume that (1) εij > ai, (else the firm would never bid at ask) and (2) both
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θ0 and θ1 are positive. Given these assumptions, we can write this condition as:
ε−ij(ai) ≤ εij ≤ ε+

ij(ai). To show that this implies a unique choice of bid (and is
therefore both necessary and sufficient for establishing bij = ai), consider the case
where the derivative of the left-hand profit function is negative at ai. This implies:

g−ij(ai)(εij − ai)−G−ij(ai) < 0 =⇒ g+
ij(ai)(εij − ai)−G+

ij(ai) < 0,

since by construction g+
ij(ai) < g−ij(ai) and G+

ij(ai) = G−ij(ai). By the same logic:

g+
ij(ai)(εij − ai)−G+

ij(ai) > 0 =⇒ g−ij(ai)(εij − ai)−G−ij(ai) > 0.

Therefore, if a firm finds it profitable to bid below (above) ask given its left-hand
(right-hand) profit function, then it also finds it profitable to bid below (above) ask
given its right-hand (left-hand) profit function. In other words, firms never face a
situation in which they can increase expected profit relative to bidding at ask by
bidding both slightly above or slightly below ask. These conditions guarantee that
the firm’s optimal choice of bid is unique, even incorporating the kink, and so we may
write the firm’s optimal bidding function as:

bij(εij) =


b−ij(εij) if ε−ij(ai) ≥ εij

ai if ε−ij(ai) ≤ εij ≤ ε+
ij(ai)

b+
ij(εij) if εij ≥ ε+

ij(ai).

We have therefore shown that the firm’s optimal bid is a strictly increasing function
of its valuation outside of the interval [ε−ij(ai), ε+

ij(ai)], and is flat within that region.
Next, we consider firms’ participation decisions. Our results imply that the firm’s

indirect expected profit function is a strictly increasing function of the εij:

π∗ij(εij) =


π∗−ij (εij) if ε−ij(ai) ≥ εij

Gij(ai)(εij − ai) if ε−ij(ai) ≤ εij ≤ ε+
ij(ai)

π∗+ij (εij) if εij ≥ ε+
ij(ai).

Since π∗ij(εij) is a strictly increasing function of the firm’s valuation, an inverse indirect
expected profit function exists and is also strictly increasing. Firms’ participation
decisions are therefore given by the equivalent conditions:

Bij = 1
[
π∗ij(εij) > cj

]
⇐⇒ Bij = 1

[
νij > π∗−1

ij (cj)− γj(xi)
]
.
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G Proof of the consistency of ĉmj

Our proof of the consistency of ĉmj for each firm j (and model m) closely follows the
proof of Lemma 1 (ii) of Donald and Paarsch (2002). For clarity, we omit j and m
indices. Let n denote the total number of bids, with n → ∞. A sufficient condition
for establishing consistency is the existence of a vector of candidate characteristics
x ∈ X (including ask salary a) occurring with positive probability such that there
is a positive probability the firm optimally bids below ask for candidates with those
characteristics: ∃x ∈ X such that Pr(a > bi > 0 ∩ xi = x) > 0. The vast majority
of firms (92%) bid below ask at least once, which suggests that this assumption is
reasonable. The vector x need not be the same for all firms. This assumption implies
that the distribution of model-implied option value upper bounds π̂i is bounded below
by c when xi = x, and that Pr(π̂i ∈ [c, c + δ] | xi = x) > 0 for arbitrary δ > 0. Let
nx denote the number of bids made to candidates with characteristics x and let ĉnx
denote the minimum implied π̂ among those bids (such that ĉn = minx′∈X ĉnx′). Our
sampling assumptions imply nx a.s.→∞. For an arbitrary ε > 0, note that Pr(|π̂i− c| >
ε | xi = x) = Pr(π̂i > c + ε | xi = x) = 1 − Fπ(c + ε | xi = x) < 1. Let
F π|x(a) = 1− Fπ(a | xi = x). We then have that

(
F π|x(c + ε)

)nx a.s.→ 0, and therefore
Pr(|ĉnx − c| > ε) = Pr(ĉnx > c + ε) = E

[(
F π|x(c + ε)

)nx
]
. Since ε is arbitrary, ĉnx

p→ c,
and since ĉnx ≥ ĉn ≥ c, ĉn p→ c. Further, supm>n |ĉm − c| = |ĉn − c| p→ 0 since ĉn is
non-increasing in n, and so ĉn a.s.→ c.
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H Additional Testing Results

H.1 Weak Instrument Diagnostics

Duarte et al. (2024) note that while model selection tests of the kind we implement
(which compare the relative fit of a set of models) have advantages over more tradi-
tional model assessment tests (which assess the absolute fit of each model separately),
model selection procedures may suffer from severe distortions in the presence of weak
instruments. To diagnose these issues, they propose a novel weak instrument diag-
nostic based on a heteroskedasticity-robust F -statistic. When the F -statistic exceeds
a certain critical value, researchers may conclude that their instruments are strong.
Duarte et al. (2024) distinguish two cases: whether instruments are weak for size or
weak for power. Instruments are weak for size when the worst-case probability of
rejecting the null hypothesis when the null is true exceeds a given confidence level.
Instruments are weak for power when the best-case probability of rejecting the null
hypothesis when the null is indeed false falls below a given confidence level. We denote
the critical values corresponding to a worst-case size of 0.075 by cvs and the critical
value associated with a best-case power of 0.95 by cvp. While the relevant critical
values for determining instrument strength can be different for each pair of models, in
practice the critical values for each instrument set are extremely close. We therefore
report the largest of each of the two critical values across model comparisons for each
instrument set.

F -statistics and critical values for diagnosing weak instruments are reported in
table H.1 below. Both instrument sets are strong for size in all model comparisons.
The BLP/Differentiation instruments are also strong for power across all comparisons.
The potential tightness instrument is strong for power across all comparisons except
one – the comparison between the two monopsonistic competition models. This sug-
gests that the test based on our potential tightness instrument may be overly conser-
vative for this comparison. However, the test nonetheless rejects the null hypothesis
of model equivalence. In sum, these diagnostics suggest that weak instrument issues
are not a concern for the interpretation of our testing results.
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Table H.1: Weak Instrument Diagnostic F -Statistics (Duarte et al. 2024)

(1) (2) (3) (4)

Model Monopsonistic Comp. Oligopsony
Not Predictive Type Predictive Not Predictive Type Predictive

Panel A: Potential Tightness Instrument

Perfect Competition 73.89 76.11 774.16 883.20
Monopsonistic, Not Predictive – 1.93 941.44 1049.78
Monopsonistic, Type Predictive – 884.77 1074.12
Oligopsony, Not Predictive – 587.66
Oligopsony, Type Predictive –

Critical Values: cvs = 0.00, cvp = 29.8

Panel B: BLP/Differentiation Instruments

Perfect Competition 12.69 13.04 36.79 34.48
Monopsonistic, Not Predictive – 17.71 34.31 28.65
Monopsonistic, Type Predictive – 37.79 33.14
Oligopsony, Not Predictive – 29.92
Oligopsony, Type Predictive –

Critical Values: cvs = 0.00, cvp = 2.8

Note: This table reports F -statistics for diagnosing weak instruments for testing conduct and associated (ap-
proximate) critical values proposed by Duarte et al. (2024). Panel A reports diagnostics for the version of the
testing procedure with tij , potential on-platform tightness, as the single instrument used to form the exclusion
restriction. Panel B reports diagnostics for the version of the testing procedure with ẑij ,BLP/Differentiation
instruments, as the instrument set used to form exclusion restrictions. Each cell reports the F -statistic for
testing between the row and column models. Critical values for testing whether instruments are weak for ei-
ther size or power (cvs and cvp, respectively) are reported at the bottom of each panel.

H.2 The Vuong (1989) Likelihood Ratio Test

Because we estimate models by maximum likelihood, a natural option for our test of
conduct is a straightforward application of the Vuong (1989) likelihood ratio test. The
Vuong (1989) test is a pairwise, rather than ensemble, testing procedure: rather than
explicitly identifying the “best” model among a set of alternatives, the test considers
each pair of models in turn and asks whether one of those models is closer to the
truth than the other. In the likelihood setting, the “better” of two models is the one
with greatest goodness-of-fit, as measured by the maximized log-likelihoods.54

Let s = |ij : Bij = 1| denote the sample size. For a pair of models m1 and m2,

54. The population expectation of the log-likelihood measures the distance, in terms of the
Kullback-Liebler Information Criterion (KLIC), between the model and the true data generating
process.
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denote the maximized sample log-likelihoods by Lm1
s and Lm2

s , respectively, where:

Lms = max
Ψ

∑
ij:Bij=1

log
(
Lmij (Ψ)

)
,

and Ψm denotes the arg max. The null hypothesis of our test is that m1 and m2 are
equally close to the truth, or equivalent. In this case, the population expectation of
the difference in log likelihoods is zero. There are two one-sided alternative hypothe-
ses: that m1 is closer to the truth than m2, and vice versa. When m1 is closer to
the true data-generating process, the population expectation of the likelihood ratio
E0[log(Lm1

ij (Ψm1)/Lm2
ij (Ψm2)] is greater than zero. Vuong (1989) shows that when m1

and m2 are non-nested, an appropriately-scaled version of the sample likelihood ratio
is asymptotically normal under the null that the two models are equivalent:

Zm1,m2
s = L

m1
s − Lm2

s√
s · ω̂m1,m2

s

D→ N (0, 1),

where ω̂m1,m2
s is the square root of a consistent estimate of the asymptotic variance

of the likelihood ratio, ω2
∗
m1,m2 . We set:

ω̂m1,m2
s =

1
s

∑
ij:Bij=1

log
(
Lm1
ij (Ψm1)
Lm2
ij (Ψm2)

)2
1/2

.

We construct test statistics Zm1,m2
s for every pair of models we estimate. Given a

significance level α with critical value cα, we reject the null hypothesis thatm1 andm2

are equivalent in favor of the alternative that m1 is better than m2 when Zm1,m2
s > cα,

and vice versa if Zm1,m2
s < cα. If |Zm1,m2

s | ≤ cα, the test cannot discriminate between
the two models.

How does variation in the instrument increase the power of the test? The answer
depends on the relevance of the instrument for predicting markdowns. Returning to
the simplified example above, we may write the misspecification error as:

ζmij = log
(
εmij (bij)

)
− log

(
εij(bij)

)
.

To the extent that variation in tightness drives variation in markdowns under the true
model, variation in tightness will also generate variation in ζmij if the assumed modelm
is misspecified. This implies that relatively more misspecified models will imply val-
uations that are more difficult to explain using observables than those that are closer
to the truth. Table H.2 reports the results of implementing this testing procedure.
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The results are qualitatively extremely similar to the results of the moment-based
testing procedure.

Table H.2: Non-Nested Model Comparison Tests (Vuong 1989)

(1) (2) (3) (4) (5)

Model Monopsonistic Comp. Oligopsony MCS p-Value
Not Predictive Type Predictive Not Predictive Type Predictive

Perfect Competition -193.86 -192.57 -119.48 -117.93 0.00
Monopsonistic, Not Predictive – 4.16 58.59 58.25 1.00
Monopsonistic, Type Predictive – 54.64 58.77 <0.01
Oligopsony, Not Predictive – 3.96 0.00
Oligopsony, Type Predictive – 0.00

Note: Columns 1-4 of this table test statistics from the Vuong (1989) non-nested model comparison procedure. Positive values
imply the row model is preferred to the column model. Under the null of model equivalence, the test statistics are asymptoti-
cally normal with mean zero and unit variance. Column 5 reports model confidence set p-values.

H.3 Robustness of our Conduct Test: Alternative Instruments

As a supplement to our main testing specification, we also implement a version of
the Rivers and Vuong (2002) testing procedure using an alternative set of instru-
mental variables: the “differentiation instruments” proposed by Gandhi and Houde
(2023). Differentiation instruments are a version of the standard set of instruments
proposed by Berry, Levinsohn, and Pakes (1995) (BLP instruments). This standard
set contains the characteristics of all products in the market. Differentiation instru-
ments measure the relative distance between each product and the set of competing
products in the market in characteristics space, and are constructed using the same
underlying information as standard BLP instruments. Our data consistently mea-
sures a handful of firm characteristics: firm age (which we split into terciles), firm
size (as a categorical variable with four size bins), and firm industry (we focus on
three major industries–tech, finance, and health–with all remaining industries com-
bined in an “other” category). Denote these firm-level variables by zj` for each firm j

and binary outcome `. Next, denote markets (occupation-by-experience-by-two-week
period bins) by t and the set of competing firms in market t by Jt. We first compute
the total number of competing firms in the market:

zj0t =
∑
k

1[k ∈ Jt].

When product/firm characteristics are continuous, differentiation instruments can be
calculated either as the sum of the Euclidean distances between a product and all of its
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rival products in characteristics space, or the total number of rival products within a
certain distance bandwidth in characteristics space (typically one standard deviation
in each characteristic dimension). Because all firm characteristics we measure have
been discretized, differentiation instruments take a simple form: the instruments for
each product characteristic are the counts of all other firms in the market that have
the same value of zj`:

zj`t =
∑

k∈Jt\j
1[zj` = zk`].

We also compute differentiation instruments for the interactions between pairs of
characteristics. For each pair of non-exclusive binary characteristics ` and m, we
define:

zj`mt =
∑

k∈Jt\j
1[zj` = zk`]× 1[zjm = zkm].

Gandhi and Houde (2023) make additional practical suggestions for implementing
differentiation instruments. First, because there may be a large number of potential
instruments (here, combining zj0t, zj`t ∀`, and zj`mt ∀` 6= m ), they suggest picking
a subset of instruments based on the amount of available variation. In practice, we
reduce the dimensionality of the instrument set by computing the principal com-
ponents of the full set of potential instruments, and retaining the components that
explain the vast majority of the total variation of the full instrument set. Denote the
dimensionality-reduced instrument set by the vector zjt, to which we append a column
of ones. Second, because our model of preferences incorporates heterogeneity that is
correlated with candidate characteristics, they suggest including the interactions of
these instruments with those characteristics. Since we measure a large number of
candidate characteristics xi, we do not include all possible interactions. Instead, we
interact the dimensionality-reduced instrument set with α̂i, the vector of predicted
probabilities that candidate i is of each type q conditional on the full vector of i’s
observable resume characteristics. Because these probabilities sum to one, the final
version of our instrument set is constructed as:

ẑij = α̂i · zjt(i,j),

where t(i, j) is an indexing function that maps candidate-firm pairs to markets, and
· denotes the full set of column interactions. This instrument set (ẑ) is what we refer
to as “BLP/Differentiation IVs”.

Our implementation of the testing procedure using BLP/Differentiation IVs ẑij
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closely follows the notation of Duarte et al. (2024). Denote the generalized residuals
from each estimated model m by ĥmij , and recall that s = |{ij : Bij = 1}| is the
sample size. We use a GMM objective function to define lack-of-fit: the population
version of this objective is Qm = g′mWgm, where gm = E[zij ·hmij ] andW = E[zijz′ij]−1.
The sample analogues of these quantities are: Qm

s = ĝ′mŴ ĝm, where ĝm = s−1ẑ′ĥm

and Ŵ = s(ẑ′ẑ)−1. For any pair of models m1 and m2, we compute the Rivers and
Vuong (2002) test statistic as:

Tm1,m2
s = Qm1

s −Qm2
s

σ̂m1,m2
s /

√
s
,

where σ̂m1,m2
s is an estimate of the population variance of Qm1 − Qm2 . As before,

this test statistic is asymptotically normally distributed with mean zero and vari-
ance one under the null hypothesis of model equivalence (that models m1 and m2 are
equally far from the truth). If model m1 is “asymptotically better” than model m2,
Tm1,m2
s → −∞ as s → ∞ (likewise, Tm1,m2

s → +∞ if m2 is “asymptotically better”
than m1). We construct σ̂m1,m2

s using the analytical formula provided by Duarte et
al. (2024), clustering at the company level (j) to account for cross-observation de-
pendence in ẑij. Panel B of Table 3 reports the results of implementing this testing
procedure. The results are qualitatively extremely similar to the results obtained
using the single on-platform potential market tightness instrument, tij and the pair-
wise testing procedure leads to the same conclusion: the not-predictive monopsonistic
competition still performs best.

H.4 Conduct Tests Using Final Offers

To implement our test using final offers, we re-estimate labor demand under each
model of conduct on the set of accepted bids. This sample comprises candidates who
agreed to interview after receiving an initial bid, representing the pool from which
firms choose when making final offers. Our estimation procedure for labor demand
at the final offer stage largely parallels the procedure outlined in Section 5.3. As
with initial bids, we assume firms formulate optimal final offers b◦∗ij to maximize the
expected value of a final offer, given by the function π◦ij(b):

π◦ij(b) = G◦ij(b)× (ε◦ij − b).

Under Assumption 3, the parameters that govern candidates’ labor supply responses
to initial bids also govern their responses to final offers. This assumption does not
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require that candidates’ idiosyncratic taste shocks remain constant between the initial
and final stages—rather, it only requires candidates’ taste shocks to have the same
marginal distribution at both stages. Given this assumption, we can construct esti-
mates of G◦ij(·) under each model m using our estimates of labor supply parameters
(A,β,Θ). We can then infer unique model-implied valuations ε◦mij for final offers with
salaries not equal to the ask and an interval of valuations [ε◦m−ij , ε◦m+

ij ] for offers made
at the ask. While sample selection is not an issue (since we observe the complete set
of candidates firms consider when making final offers), we do not observe the salaries
firms would have attached to offers they did not make. As in Section 5.3, we leverage
the model structure to deal with censoring by computing model-implied productivity
cutoffs ε̂◦mij . These cutoffs are logical upper bounds on ε◦ij under model m for each
worker i that firm j interviewed but did not make an offer to.

For each model m we construct likelihood contributions using estimates ε◦mij ,
[ε◦m−ij , ε◦m+

ij ] as follows:

L◦mij (Ψ◦m) = Fε◦
(
ε̂◦mij ; Ψ◦m

)1−B◦ij ×
[
fε◦
(
ε◦mij ; Ψ◦m

)1[b◦ij 6=ai]×

(
Fε◦

(
ε◦m+
ij ; Ψ◦m

)
− Fε◦

(
max

(
ε◦m−ij , ε̂◦mij

)
; Ψ◦m

))1[b◦ij=ai]
]B◦ij

(22)

where Ψ◦m denotes the parameters for model m, fε◦(·; Ψ◦m) is the density of ε◦ij, and
Fε◦(·; Ψ◦m) is the CDF of ε◦ij. After estimating the parameters for each model, we
construct generalized residuals h◦mij

(
Ψ̂◦m

)
to form test statistics. We implement our

test using both the potential tightness instrument and the BLP/Differentiation in-
struments. When using the potential tightness instrument tij, we follow the procedure
outlined in Section 4.3, constructing the moment Q◦ms =

(
1
s

∑
ij:B◦ij=1 h

◦m
ij

(
Ψ̂◦m

)
· tij

)2

(where s = |{ij : B◦ij = 1}|) for each model, and compute variance estimates via the
bootstrap. When using BLP/Differentiation instruments, we follow the procedure
outlined in Appendix H.3 to construct Q◦ms for each model, and construct variance
estimates using the analytical formula of Duarte et al. (2024).
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I Further model comparisons

We next consider differences in estimated labor demand parameters Γ̂ between the
preferred model and the (not-predictive) oligopsony alternative. Table I.1 reports
estimated elasticities of the systematic component of labor demand with respect to
the ask salary, along with implied semi-elasticities of the systematic component of
labor demand with respect to a selection of binary covariates. All elasticities are
evaluated at the (bid-weighted) mean values of firm characteristics. The estimated
labor demand parameters represent the impacts of ceteris paribus changes in individ-
ual determinants of productivity. Since the ask salary co-varies strongly with other
observables, we report estimates of both the semi-elasticities of each binary covari-
ate ` both holding the ask constant (γ̂`) and adjusting for differences in the average
ask salary. Column 1 reports selected coefficients from a regression of the ask salary
on all other included candidate characteristics. Women and unemployed candidates
set lower asked salaries, while those with graduate degrees and FAANG55 experience
set higher asked salaries. Columns 2 and 3 report results for the preferred model.
Column 2 reports estimates of Γ. The ask salary is a powerful determinant of produc-
tivity: the estimated elasticity with respect to the ask salary is 0.91. The remaining
semi-elasticities in column 2 are all relatively small and statistically insignificant.
Column 3 reports semi-elasticities adjusted to account for average differences in asks
between groups. Columns 4 and 5 reproduce this analysis for oligopsony. The es-
timated elasticity with respect to the ask, 0.80, is significantly lower than in the
preferred model, and the conditional semi-elasticities (Column 4) are much larger in
magnitude and statistically significant in all but one case. The unconditional semi-
elasticites under oligopsony (Column 5) are very similar to their counterparts under
monopsonistic competition. In the preferred model, systematic differences in firms’
average valuations between candidates of different groups (men vs women, lower- vs
higher-educated) is completely mediated by differences in the average asks of those
groups. Oligopsony apportions a nontrivial portion of the gaps in firms’ average val-
uations between groups to autonomous differences that are independent of the ask
(e.g. direct/taste-based discrimination).

How do our preferred estimates relate to models of additive worker and firm ef-
fects (Abowd, Kramarz, and Margolis 1999)? Our model of productivity includes
both firm-specific contributions (here captured by zj), worker-specific contributions
(captured by xi), and the interactions of firm- and worker-specific covariates. Table I.2

55. Facebook, Amazon, Apple, Netflix, Google
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reports the full set of labor demand parameter estimates for the preferred model. We
find evidence that interactions of worker and firm factors are statistically meaningful
determinants of productivity. However, the interaction effects we estimate are gener-
ally small, which suggests that additive models might well-approximate productivity.
To explore this, we regress bids, predicted εij, and the predicted systematic com-
ponent of productivity exp(z′jΓ̂xi) on all candidate and firm characteristics, without
including interactions. Consistent with Card, Heining, and Kline (2013)’s informal
assessment of the log-additivity of wages using mean residuals from Abowd, Kramarz,
and Margolis (1999) regressions, we find that the main effects of worker and firm char-
acteristics separately explain the vast majority of variation in bids and productivity,
as reflected in uniformly high (adjusted) R2 values: 0.911 for bids, 0.920 for εij, and
0.967 for exp(z′jΓ̂xi). In the context of the near-constant markdowns our preferred
model implies, this further suggests that additive models of worker and firm effects
provide good approximations to log wages.

Table I.1: Determinants of Match Productivity: Elasticities

(1) (2) (3) (4) (5)
E [∆Ask] Monopsonistic Comp. Oligopsony

β̂` γ̂` +β̂` · γ̂ask γ̂` +β̂` · γ̂ask

Ask Salary – 0.9074 – 0.7961 –
(0.0027) (0.0027)

Female -0.0607 -0.0044 -0.0595 -0.0076 -0.0527
(0.0013) (0.0029) (0.0029) (0.0027) (0.0027)

Unemployed -0.0568 0.0022 -0.0494 -0.0026 -0.0430
(0.0030) (0.0063) (0.0063) (0.0044) (0.0044)

Grad School 0.0253 0.0033 0.0262 0.0113 0.0234
(0.0010) (0.0025) (0.0025) (0.0024) (0.0024)

FAANG 0.0495 -0.0024 0.0425 -0.0099 0.0370
(0.0013) (0.0033) (0.0033) (0.0044) (0.0044)

Note: This table reports estimates of the elasticity of the systematic component
of labor demand with respect to the ask salary and the semi-elasticities of that
component with respect to a subset of binary covariates. Column (1) reports coef-
ficients from a regression of all included candidate characteristics on the ask salary.
Columns (2) and (3) report results for monopsonistic competition while Columns (4)
and (5) report results for oligopsony (both models assume not-predictive conduct).
Columns (2) and (4) report elasticities conditional on the ask salary while Columns
(3) and (5) report unconditional versions. Robust standard errors are reported in
parentheses.
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Table I.2: Labor Demand Parameter Estimates Γ̂ (log(εij) = z′jΓxi + νij)

(1) (2) (3) (4) (5) (6) (7)
Constant Firm Size Firm Industry

Candidate Covariates 16-50 51-500 501+ Finance Tech Health

(1) Constant 1.9374 -0.6086 -0.5183 -0.7550 -0.1447 -0.1788 0.0174
(0.0183) (0.0213) (0.0259) (0.0389) (0.028) (0.0269) (0.0408)

(2) log(Ask) 0.8464 0.0525 0.0466 0.0669 0.0121 0.0153 -0.0021
(0.0017) (0.0017) (0.0023) (0.0034) (0.0025) (0.0023) (0.0034)

(3) Female -0.0057 0.0036 -0.0021 -0.0025 0.0040 0.0035 0.0004
(0.0024) (0.0026) (0.0024) (0.0025) (0.0015) (0.0012) (0.0021)

(4) Software Eng. 0.0268 -0.0037 -0.0127 -0.0156 0.0068 0.0054 0.0064
(0.0027) (0.0029) (0.0027) (0.0028) (0.0016) (0.0013) (0.0021)

(5) Experience 0.0001 0.0008 0.0016 0.0015 -0.0003 -0.0003 -0.0001
(0.0006) (0.0006) (0.0006) (0.0006) (0.0002) (0.0003) (0.0004)

(6) Experience Sq. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

(7) Employed 0.0001 0.0002 0.0022 0.0007 0.0000 -0.0033 0.0019
(0.0038) (0.0041) (0.0039) (0.0041) (0.0027) (0.0022) (0.0035)

(8) Time Unemp. 0.0012 -0.0001 0.0001 -0.0006 0.0000 -0.0011 -0.0004
(0.0009) (0.001) (0.0009) (0.001) (0.0006) (0.0005) (0.0008)

(9) Attended Ivy+ -0.0009 -0.0051 -0.0020 0.0003 -0.0043 -0.0008 -0.0028
(0.0023) (0.0025) (0.0024) (0.0025) (0.0014) (0.0012) (0.002)

(10) CS Degree 0.0069 -0.0023 -0.0031 -0.0033 -0.0039 0.0014 -0.0045
(0.0021) (0.0023) (0.0022) (0.0022) (0.0013) (0.0011) (0.0017)

(11) Grad School 0.0080 -0.0023 -0.0053 -0.0062 0.0009 -0.0001 -0.0011
(0.0021) (0.0023) (0.0021) (0.0022) (0.0012) (0.001) (0.0016)

(12) FAANG 0.0026 -0.0017 -0.0049 -0.0046 -0.0027 -0.0007 -0.0008
(0.0028) (0.0029) (0.0028) (0.0029) (0.0015) (0.0013) (0.0022)

(13) No. Prior Jobs -0.0008 -0.0003 -0.0009 -0.0001 0.0006 0.0001 0.0008
(0.0005) (0.0005) (0.0005) (0.0005) (0.0003) (0.0002) (0.0004)

(14) Fulltime -0.0042 0.0017 0.0029 0.0029 -0.0011 -0.0022 0.0032
(0.0021) (0.0023) (0.0022) (0.0023) (0.0014) (0.0011) (0.0018)

(15) Sponsorship -0.0029 0.0146 0.0072 0.0084 0.0012 0.0002 -0.0018
(0.0027) (0.0029) (0.0027) (0.0027) (0.0015) (0.0012) (0.002)

(16) Remote 0.0008 0.0048 0.0011 -0.0002 0.0012 0.0010 0.0029
(0.002) (0.0022) (0.002) (0.0021) (0.0012) (0.001) (0.0016)

(17) Java 0.0030 -0.0007 0.0036 0.0046 -0.0048 -0.0044 0.0012
(0.0021) (0.0023) (0.0021) (0.0022) (0.0012) (0.001) (0.0017)

(18) Python 0.0028 -0.0007 -0.0029 -0.0035 0.0015 0.0024 -0.0028
(0.002) (0.0021) (0.002) (0.002) (0.0012) (0.001) (0.0016)

(19) SQL -0.0028 0.0061 0.0048 0.0041 0.0005 0.0026 0.0001
(0.0022) (0.0024) (0.0023) (0.0023) (0.0013) (0.0011) (0.0018)

(20) C 0.0096 -0.0136 -0.0086 -0.0093 0.0001 0.0009 0.0011
(0.0025) (0.0028) (0.0026) (0.0027) (0.0015) (0.0013) (0.0022)

Std. Dev. of νij (σ̂ν) 0.0690 (0.0001) — N = 182, 550 Implied R2 = 0.903

Note: This table reports maximum likelihood parameter estimates from our preferred
labor demand model. The parameters relate combinations of candidate and firm charac-
teristics to the distribution of firms’ valuations. Each cell reports the coefficient on the
interaction of the variables specified in the corresponding row and column. Row vari-
ables are candidate characteristics (xi), and column variables are firm characteristics
(zj).
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J Welfare: decompositions and counterfactual simulations

J.1 A Decomposition of (Expected) Inclusive Values

Given our estimates of amenity values and labor supply elasticies, it is possible to
characterize the utility value candidates associate with the portfolios of bids they
receive. This allows us to ask whether observable differences in average bids be-
tween groups are reflective of underlying differences in welfare. Recall that the utility
candidate i of type q associates to firm j’s bid is:

Viqj = uq(bij, ai) + Aqj + ξij.

For the purposes of analyzing welfare, we add back a normalized outside option term
to the monetary component utility function:

uq(bij, ai) = (θq0 + θq1 · 1[bij < ai]) · log(bij/ai) + θq0 · (log(ai)− E [log(ai)]) ,

where E [log(ai)] is the average log ask across all candidates. We normalize candidates’
outside options (j = 0) by setting bi0 = ai and Aq0 = 0 (we therefore subtract Aq0
from each Aqj). Let µiqj = exp(uq(bij, ai)) and recall that ρqj = exp(Aqj). Then i’s
type-q specific inclusive value Λiq can be written as:

Λiq = E
[

max
j:bij>0

Viqj

]
= log

∑
bij>0

exp
(
uq(bij, ai) + Aqj

) = log
∑
bij>0

µiqj · ρjq

 .
Next, define the following quantities:

Ni =
∑
bij>0

1
︸ ︷︷ ︸
# Bids + 1

, µiq = 1
Ni

∑
bij>0

µiqj︸ ︷︷ ︸
Average Monetary Value

, ρiq = 1
Ni

∑
bij>0

ρqj︸ ︷︷ ︸
Average Amenity Value

, γiq = 1
Ni

∑
bij>0

µiqj
µiq
· ρqj
ρiq︸ ︷︷ ︸

Normalized Covariance

.

Given these definitions, we may write:

Λiq = log(Ni · µiq · ρiq · γiq) = log(Ni) + log(µiq) + log(ρiq) + log(γiq).

Because types are not observed, we compute the expected inclusive value Λi by taking
the average of Λiq’s over the conditional distribution of types given i’s observables.
These probabilities are given by αiq = αq(xi | β̂), and unconditional type prob-
abilities are denoted by αq. We may then write the expected inclusive value as:
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Λi = ∑Q
q=1 αiqΛiq. We decompose this value as follows:

Λi = log(Ni)︸ ︷︷ ︸
Scale Comp.

+
Q∑
q=1

αq log(µiq)︸ ︷︷ ︸
Monetary Comp.

+
Q∑
q=1

αq log(ρiq)︸ ︷︷ ︸
Amenity Comp.

+
Q∑
q=1

αq log(γiq)︸ ︷︷ ︸
Correlation Comp.

+
Q∑
q=1

(αiq − αq)Λiq︸ ︷︷ ︸
Type-Specific Comp.

.

This decomposition splits Λi into five components: 1) a scale component that increases
in the number of bids i receives, 2) a monetary component that is a function only of
i’s ask and the bid salaries (bij) i receives, 3) an amenity component that is a function
only of the relative amenity values associated with the bids i receives, 4) a correlation
component that captures the (cross-type average of the) direction of association be-
tween monetary and amenity values of bids i receives, and 5) a type-specific component
that captures the difference between the expected valuation of i’s portfolio of bids with
and without conditioning on i’s observables (note that the Monetary, Amenity, and
Correlation components are all defined relative to the unconditional distribution of
types). While γiq is not a standard covariance, sign (log(γiq)) = sign (Coviq(µiqj, ρjq))
and is well-defined for positive random variables.

J.2 Decomposing observed gender differences in welfare

We decompose mean differences in the components of inclusive values among the set
of observed bids using the Oaxaca-Blinder (OB) decomposition (Oaxaca 1973; Blinder
1973). The OB decomposition posits that variable Yig corresponding to individual i
in group g = {m, f} can be written as Yig = X ′igβg + εig, where Xig are covariates
measured for all individuals and E(εig) = 0. The average value of Yig in group g

is therefore given by Y g = X
′
gβg. Let ∆Y = Y m − Y f , ∆X = Xm − Xf , and

∆β = βm − βf . The OB decomposition represents the difference ∆Y as:

∆Y = X
′
mβm −X

′
fβf = ∆X ′βf︸ ︷︷ ︸

endowments

+ X
′
f∆β︸ ︷︷ ︸

coefficients

+ ∆X ′∆β︸ ︷︷ ︸
interactions

.

The classic OB decomposition apportions differences in the mean of a variable be-
tween two groups into components due to differences between those groups in: 1)
endowments (the mean of X by group); 2) coefficients or returns associated with
those covariates (βg); and 3) the interactions between coefficient and endowment
differences.56 The OB decompositions we present should be interpreted as purely

56. OB decompositions are not unique: an equivalent “reverse” decomposition may be obtained by
replacing f with m in the subscripts of the first two terms and flipping the sign of the third term.
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descriptive. However, the size of the endowments component relative to the coeffi-
cients component can provide suggestive evidence about the sources of gender gaps.
Roughly speaking, the larger the coefficients component relative to the endowment
component, the stronger the suggestive evidence that group differences are driven
by differences in how those groups are treated conditional on characteristics. Impor-
tantly, we exclude the ask salary as an explanatory variable in our decompositions.
The endogeneity of the ask salary complicates the interpretation of decompositions
that include it as an explanatory variable: if the ask salary is a function of gender,
then it may not be appropriate to interpret gender differences in asks as reflecting
differing endowments.57

We report decompositions of mean gaps in the number of bids received, log ask
salary and the (expected) inclusive value and its five sub-components in Table J.1
(here, women are the reference group, and positive differences correspond to larger
values for men). The first row decomposes the gap in the number of bids received by
men and women: on average, women receive 0.248 fewer bids than men. The second
row decomposes the ask gap. Two-fifths of the ask gap is driven be differences in
endowments, while the remaining three-fifths is driven by differences in coefficients,
suggesting that women set lower asks than men even when they have identical observ-
ables. The third row decomposes the significant gender gap in welfare as measured
by the inclusive values associated with of candidates’ offer sets. The decomposition
apportions roughly 55% of this gap to differences in endowments, and 45% to differ-
ences in coefficients. While it is not possible to provide a causal interpretation of this
decomposition, the substantial component associated with differences in coefficients
is suggestive evidence of either differences in bargaining power or employer discrim-
ination (or both). The remaining rows decomposes each of the five components of
inclusive values. The Scale and Monetary components of inclusive values account for
nearly the entire gap, although 2.3% of the gender gap in welfare is attributable to the
fact that men receive bids from firms with better amenities than women do. Taken
together, these results suggest that the large observed gender gap in bids is reflective
of a large gender gap in welfare. Unconditionally, the gap in welfare between men and
women is exacerbated by differences in the amenity values of the bids they receive.
Gender differences in endowments account for the majority of the unconditional gaps.

57. Because we omit the ask salary from these decompositions, the effect of differences in the ask
salary will be apportioned between the endowments and coefficients components. Any differential
patterns in the relationship between characteristics and asks will be reflected in the coefficients
component, while mean differences in asks are reflected in the endowments component.
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Table J.1: Oaxaca-Blinder Decompositions of Gender Gaps

(1) (2) (3) (4) (5) (6) (7) (8)
Mean Difference Endowments Coefficients Interactions

∆Y SE ∆X ′βm SE X
′
f∆β SE ∆X ′∆β SE

Number of Bids 0.248 (0.040) 0.410 (0.029) -0.143 (0.038) -0.019 (0.028)
Log of Ask Salary 0.101 (0.003) 0.039 (0.002) 0.061 (0.003) 0.000 (0.002)
Inclusive Value = 0.443 (0.015) 0.243 (0.011) 0.205 (0.014) -0.005 (0.010)

+ Scale Comp. 0.042 (0.007) 0.066 (0.005) -0.027 (0.006) 0.002 (0.004)
+ Monetary Comp. 0.389 (0.011) 0.156 (0.008) 0.230 (0.010) 0.003 (0.007)
+ Amenity Comp. 0.010 (0.003) 0.018 (0.002) -0.003 (0.003) -0.005 (0.002)
+ Correlation Comp. 0.001 (0.000) 0.000 (0.000) 0.000 (0.001) 0.001 (0.000)
+ Type-Specific Comp. 0.001 (0.001) 0.003 (0.001) 0.004 (0.001) -0.006 (0.001)

Note: This table reports Oaxaca-Blinder decompositions of gender gaps in components of utility. Each row
corresponds to a particular quantity. Columns 1 and 2 report the mean differences for that quantity (1) and
the standard error associated with that difference (2). Columns 3 and 4 report the Endowments component
of the OB decomposition (3) and the standard error associated with that component (4). Columns 5 and 6
report the Coefficients component of the OB decompostion (5) and the standard error associated with that
component (6). Finally, columns 7 and 8 report the Interactions component of the O decomposition (7) and
the standard error associated with that component (8).

J.3 Counterfactual scenarios of interest

To better understand the welfare implications of imperfect competition, we use our
supply and demand estimates to simulate bidding outcomes under all four conduct sce-
narios: {monopsonisitic competition, oligopsony}× {not predictive, type-predictive}.
To gauge the losses due to imperfect competition, we define a new form of conduct,
which we term price taking. Under this alternative, firms have no discretion over
the wages they offer. Instead, firms are constrained to offer a prevailing market wage,
as if set by a Walrasian auctioneer. In our price-taking alternative, we set the equilib-
rium wage equal to the systematic component of firms’ valuations, bij = exp(z′jΓxi).
Given this set of wages, the only decision firms have to make is whether to bid on
each candidate. Because firms are price takers in this scenario, we assume that they
view themselves as atomistic, as in monopsonistic competition.58 In addition to these
simulations, we also simulate the effects of a simple policy meant to reduce gender
disparities in wages: blinding employers to candidates’ gender. This counterfactual
entails replacing gender-specific estimates of labor demand with cross-gender aver-
ages, and doing the same for estimates of labor supply.

58. Because bids vary conditional on detailed controls, price-taking is automatically ruled out as
a mode of conduct that can describe firms’ actual bidding behavior on the platform.
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J.4 Computing new counterfactual equilibria

In order to compute counterfactuals, we randomly select 500 candidates from the
subset of candidates who are software engineers with 6-10 years of experience and
1,000 firms from the subset of firms who bid on such candidates (the 2-1 ratio of
firms to candidates approximates the average level of on-platform tightness for this
submarket). For each firm-candidate pair, we compute the model-implied systematic
component of firm valuations using our preferred estimates of labor demand param-
eters, exp(z′jΓ̂xi). Under a particular conduct assumption, equilibrium is determined
by a set of beliefs over the distribution of the utility afforded by the best option in
each candidates’ offer set. The inclusive value is a sufficient statistic for the distri-
bution of the maximum utility option for each candidate. At an equilibrium, firms’
beliefs about inclusive values must be consistent with the true distribution of inclusive
values generated by the bidding behavior of competing firms.

To compute new equilibria, we first conjecture an initial set of (expected) inclusive
values Λ1

iq. We then iterate the following steps:

1. At iteration t, take iid draws from a normal distribution with mean zero and
standard deviation σ̂ν to produce a new set of idiosyncractic components of
firms’ valuations, νtij. Use these draws, plus the systematic components of
valuations z′jΓ̂xi, to compute εtij.

2. Given εtij and Λt
i, compute btij as firm j’s best response (under the assumed form

of conduct m). If there is no number b such that Gm
ij (b)(εij − b) ≥ ĉj, then set

btij = 0.

3. Given firms’ best responses btij, calculate the realized inclusive values for each
candidate, Λt∗

iq = E[log(∑j:bt
ij>0 exp(uq(btij, ai) + Aqj)]. Compute the vector of

expected inclusive values at the next iteration by taking a step αt ∈ [0, 1]
towards Λt∗

iq :
Λt+1
iq = αtΛt∗

iq + (1− αt)Λt
iq.

We iterate this procedure until the distribution of inclusive values converges. We then
compute mean counterfactual outcomes by averaging over firms’ best responses given
the equilibrium distribution of inclusive values across 50 draws of νij.
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J.5 Simulation Results

Table J.2 reports the results of our simulations. For each scenario, we compute the
number of bids received per candidate, the expected inclusive value of the candidate’s
portfolio of bids, and the five components of that expected inclusive value. We also
compute the average monetary value of the bids candidates receive, the difference
between those bids and candidates’ asks (as a percent of the ask), and the markdown
(as a percent of firms’ valuations), conditional on having received at least one bid.

The unconditional means of each of these variables across simulation repetitions
are reported in Panel A of Table J.2. We first consider scenarios in which firms
are assumed to be not predictive (columns 1-3). Unsurprisingly, average bids are
higher ($161k vs $133k or $130k) and markdowns are lower (12.33% vs 19.01% or
21.67%) in the price taking model (column 1) relative to the preferred monopsonistic
competition model (column 2) or the oligopsony model (column 3). Additionally,
candidates receive markedly more bids (19.33 vs 6.26 or 6.13) under price taking
than under monopsonistic competition or oligopsony. These factors combine to make
overall expected utility lower under monopsonistic competition or oligopsony than
under price taking (with the caveat that absolute utility levels not possible to inter-
pret). Strikingly, the simulations suggest that candidates’ welfare losses relative to
price taking are 44% larger under oligopsony than under monopsonistic competition.
The lion’s share of this difference is accounted for by a drop in the average amenity
value of bids candidates receive under oligopsony relative to monopsonistic compe-
tition. While the story is broadly the same under type-predictive conduct (columns
4-6), there are some notable differences. First, the number of bids candidates receive
and overall welfare is higher under type-predictive conduct, although markups are
also slightly higher. These changes are more muted under oligopsony than under
monopsonistic competition: the average candidate receives nearly one additional bid
under type-predictive monopsonistic competition than under not-predictive monop-
sonistic competition, but just 0.1 additional bids under type-predictive oligopsony
relative to not-predictive oligopsony. The average amenity value of candidates’ bids
drops for each of these conduct assumptions, but this drop is more than made up
for by large increases in the type-specific component, suggesting that firms are able
to target bids to the candidates who most strongly value their amenities. Interest-
ingly welfare losses relative to price taking under type-predictive conduct are 9.7%
lower under monopsonistic competition and 4.8% lower under oligopsony than under
not-predictive conduct, suggesting that while increased targeting of bids can yield
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additional market power to firms, that effect is more than counterbalanced by the
increased value of the amenities candidates receive.

Panel B of Table J.2 reports differences in these statistics by gender. Under
all conduct scenarios, women receive fewer bids, lower bids, and higher markdowns
than men. Although the absolute level of the difference in number and monetary
value of bids is larger under price taking than under monopsonistic competition or
oligopsony, the relative difference in these quantities is smaller: under not-predictive
(type-predictive) conduct, women receive 6.9% (8.2%) fewer bids under price taking,
but 7.7% (9.0%) fewer bids under monopsonistic competition and 13.2% (10.37%)
fewer bids under oligopsony. Similarly, the relative difference between the bids men
and women receive is roughly 9.6% under price taking, 9.8% under monopsonistic
competition, and 10.5% under oligopsony (in both not-predictive and type-predictive
scenarios). These gaps lead to substantial differences in welfare between women and
men across all scenarios, and are larger under type-predictive conduct than under
not-predictive conduct. The upshot of these results is that while firms’ exercise of
labor market power tends to lower welfare for all workers, it also tends to expand
gender gaps, as first posited by Robinson (1933).

Can a simple policy that blinds employers to the gender of the candidates they
consider narrow these gaps? Panel C of Table J.2 reports differences between mean
outcomes for men and women across simulation draws in which firms are constrained
to no longer observe candidate gender. The results from our simulations suggest that
the efficacy of such a policy is relatively limited. Under our preferred model of firm
conduct (not predictive, monopsonistic competition), the gender gap in welfare de-
clines by 11.0%. However, such a policy is predicted to increase the gap in welfare
by 5.4% under not-predictive oligopsony conduct, and the predicted effect on welfare
varies substantially across conduct scenarios. These policy simulations suggest that
interventions to remove information will likely be less effective in closing gender gaps
in labor market outcomes than interventions that nudge women to adopt bargaining
positions closer to those of similar-qualified men (e.g. increase their ask salaries, as in
Roussille 2023). Further, the variability in predicted policy effects across conduct sce-
narios further underscores the importance of testing assumptions around firm conduct
for informing analysis of and policy for labor markets.
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Table J.2: Counterfactual Simulations

(1) (2) (3) (4) (5) (6)
Panel A: Unconditional Means

Not Predictive Type-Predictive
PT MC OG PT MC OG

Number of Bids/Candidate 19.33 6.26 6.13 19.83 7.23 6.25
Bid Salary $161k $133k $130k $161k $133k $130k
Bid − Ask (as % of Ask) 20.24 -0.48 -2.81 20.27 -0.38 -3.09
Markdown (%) 12.33 19.01 21.67 12.28 18.92 21.79
Inclusive Value = 4.467 3.164 2.593 4.560 3.384 2.776

+ Scale Component 2.981 1.937 1.863 3.002 2.055 1.892
+ Monetary Component 0.706 0.005 -0.092 0.707 0.009 -0.104
+ Amenity Component 0.792 1.302 0.824 0.749 1.073 0.817
+ Correlation Component 0.003 -0.042 -0.049 0.005 -0.032 -0.060
+ Type-Specific Component -0.016 -0.038 0.048 0.098 0.279 0.232

Panel B: Differences, Women - Men

Not Predictive Type-Predictive
PT MC OG PT MC OG

Number of Bids/Candidate -1.330 -0.480 -0.809 -1.618 -0.654 -0.648
Bid Salary -$15.4k -$13.0k -$13.4k -$15.4k -$12.8k -$13.8k
Bid − Ask (as % of Ask) 0.72 0.46 -0.20 0.73 0.57 -0.22
Markdown (%) 0.05 0.25 0.72 0.07 0.15 0.90
Inclusive Value = -0.457 -0.408 -0.483 -0.461 -0.464 -0.511

+ Scale Component -0.067 -0.057 -0.159 -0.082 -0.063 -0.122
+ Monetary Component -0.369 -0.335 -0.334 -0.369 -0.335 -0.346
+ Amenity Component 0.011 0.042 -0.014 -0.004 -0.071 -0.063
+ Correlation Component -0.002 -0.024 -0.029 -0.002 -0.011 -0.012
+ Type-Specific Component -0.031 -0.035 0.053 -0.004 0.017 0.031

Panel C: Differences, Women - Men, Gender Blind Firms

Not Predictive Type-Predictive
PT MC OG PT MC OG

Number of Bids/Candidate -1.220 -0.353 -0.626 -1.341 -0.439 -0.684
Bid Salary -$14.7k -$12.7k -$12.9k -$14.7k -$12.6k -$12.7k
Bid − Ask (as % of Ask) 1.24 0.69 0.20 1.23 0.76 0.36
Markdown (as % of MRPL) 0.05 0.43 0.70 0.05 0.35 0.70
Inclusive Value = -0.435 -0.363 -0.509 -0.440 -0.427 -0.463

+ Scale Component -0.061 -0.038 -0.146 -0.066 -0.035 -0.128
+ Monetary Component -0.352 -0.327 -0.324 -0.353 -0.327 -0.328
+ Amenity Component 0.011 0.048 -0.049 -0.001 -0.050 -0.026
+ Correlation Component -0.002 -0.022 -0.020 -0.002 -0.012 -0.015
+ Type-Specific Component -0.030 -0.024 0.030 -0.017 -0.003 0.034

Note: This table reports results of counterfactual simulations under various conduct assumptions.
Each column corresponds to a combination of conduct assumptions (PT = price-taking, MC =
monopsonistic competition, and OG = oligopsony). Each cell reports the average of a statistic over
50 simulation draws. Panel A reports the unconditional means, Panel B reports differences in means
between women and men, and Panel C reports differences in means between women and men for
simulations in which firms are constrained to be gender blind.

93



Additional References

Abowd, John, Francis Kramarz, and David Margolis. 1999. “High Wage Work-
ers and High Wage Firms.” Econometrica 67 (2): 251–333.

Bagnoli, Mark, and Ted Bergstrom. 2005. “Log-Concave Probability and Its
Applications.” Economic Theory 26 (2): 445–469.

Berry, Steven, James Levinsohn, and Ariel Pakes. 1995. “Automobile Prices
in Market Equilibrium.” Econometrica 63 (4): 841–890.

Bhaskar, V., Alan Manning, and Ted To. 2002. “Oligopsony and Monopsonistic
Competition in Labor Markets.” Journal of Economic Perspectives 16 (2): 155–
174.

Blinder, Alan. 1973. “Wage Discrimination: Reduced Form and Structural Esti-
mates.” Journal of Human Resources 8 (4): 436–455.

Böhning, Dankmar. 1992. “Multinomial Logistic Regression Algorithm.” Annals of
the Institute of Statistical Mathematics 44, no. 1 (March): 197–200.

Böhning, Dankmar, and Bruce G. Lindsay. 1988. “Monotonicity of Quadratic-
approximation Algorithms.” Annals of the Institute of Statistical Mathematics 40
(4): 641–663.

Card, David, Jörg Heining, and Patrick Kline. 2013. “Workplace Heterogene-
ity and the Rise of West German Wage Inequality.” The Quarterly Journal of
Economics 128, no. 3 (May): 967–1015.

Chetty, Raj, John N Friedman, Emmanuel Saez, Nicholas Turner, and
Danny Yagan. 2020. “Income segregation and intergenerational mobility across
colleges in the United States.” The Quarterly Journal of Economics 135 (3): 1567–
1633.

Donald, Stephen, and Harry Paarsch. 2002. “Superconsistent Estimation and
Inference in Structural Econometric Models using Extreme Order Statistics.”
Journal of Econometrics 109 (2): 305–340.

Duarte, Marco, Lorenzo Magnolfi, Mikkel Sølvsten, and Christopher Sul-
livan. 2024. “Testing Firm Conduct.” Quantitative Economics 15 (3): 571–606.

Gandhi, Amit, and Jean-Francois Houde. 2023.Measuring Substitution Patterns
in Differentiated-Products Industries. NBER Working Paper 26375.

94



Oaxaca, Ronald. 1973. “Male-Female Wage Differentials in Urban Labor Markets.”
International Economic Review 14 (3): 693–709.

Rivers, Douglas, and Quang Vuong. 2002. “Model Selection Tests for Nonlinear
Dynamic Models.” The Econometrics Journal 5 (1): 1–39.

Robinson, Joan. 1933. The Economics of Imperfect Competition. Palgrave.

Roussille, Nina. 2024. “The Role of the Ask Gap in Gender Pay Inequality.” Quar-
terly Journal of Economics.

Vuong, Quang H. 1989. “Likelihood Ratio Tests for Model Selection and Non-
Nested Hypotheses.” Econometrica 57 (2): 307–333.

Wu, Tong Tong, and Kenneth Lange. 2010. “The MM Alternative to EM.” Sta-
tistical Science 25 (4).

95


	Introduction
	Setting and Data
	Market description
	Sample restrictions
	Stylized facts

	Defining Firm Wage-Setting Conduct
	Labor Supply
	Labor Demand
	Firm Conduct in Equilibrium

	A Test of Firm Wage-Setting Conduct
	Setup: Testing via an Exclusion Restriction
	Choice of Instrument
	The RiversVuong2002 Test

	Identification and Estimation of Labor Supply and Demand
	Labor Supply
	Constructing Firms' Beliefs
	Labor Demand
	Discussion: Unobserved Off-Platform Search

	Results
	Rejecting the Single Type Model of Labor Supply
	Significant Vertical and Horizontal Differentiation of Firms
	Reduced-Form Evidence
	Testing Between Models of Conduct
	Comparing Demand Estimates

	Conclusion
	Additional Figures
	Additional Tables
	Benchmark connected set against administrative datasets
	Illustration of conceptual framework
	EM algorithm details
	Properties of bidding strategies
	Proof of the consistency of c"0362cjm 
	Additional Testing Results
	Weak Instrument Diagnostics 
	The vuong1989 Likelihood Ratio Test
	Robustness of our Conduct Test: Alternative Instruments
	Conduct Tests Using Final Offers

	Further model comparisons
	Welfare: decompositions and counterfactual simulations 
	A Decomposition of (Expected) Inclusive Values
	Decomposing observed gender differences in welfare
	Counterfactual scenarios of interest
	Computing new counterfactual equilibria
	Simulation Results


